Libellé préféré : Entreposage de données;

Synonyme CISMeF : Entrepôt de données;

Acronyme CISMeF : EDS;

Lien Wikipédia : https://fr.wikipedia.org/wiki/Entrepôt de données;

Détails


Consulter ci-dessous une sélection des principales ressources :

Vous pouvez consulter :


N1-VALIDE
Entrepôts de données de santé: comment ça fonctionne?
Webinaire 10 - Mardis de la donnée de santé
https://www.youtube.com/watch?v=s9rMnKp4LDQ
Concrètement, comment faire?; Des données pertinentes; Des données organisées; Des données sécurisées; Gestion des accès; Gouvernance des entrepôts; En résumé: utiliser l'EDS; Mais un EDS cela ne pose pas de problème?; Zoom sur l'information des patients; Qu'avons-nous appris aujourd'hui?;
2024
false
false
false
false
true
ANS - Agence du numérique en santé
France
français
Entreposage de données
entrepôt de données
congrès ou conférence
matériel audio-visuel

---
N1-VALIDE
Entrepôts de données de santé
Séminaire Santé Numérique - Réanimation et anesthésie
https://www.cismef.org/cismef/wp/wp-content/uploads/2024/04/3.eds_20240405.pdf
Présentation faite par le Dr Benjamin Popoff. Les thèmes abordés sont: Système d'information hospitalier; Entrepôts de données de santé (EDS): Construction d'un EDS; Objectifs d'un EDS; Système d'information apprenant; EDS en France; Au CHU de Rouen; EDSaN; Entrepôts régionaux; Liaisons entre entrepôts
2024
false
false
false
false
3eme cycle / doctorat
true
Université de Rouen, UFR Santé
CHU de Rouen
France
français
Entreposage de données
entrepôt de données
congrès ou conférence
systèmes d'information hospitaliers
systèmes d'information hospitaliers
1.2.3 - comprendre le cycle de vie de la donnée de santé numérique
1.2.4 - connaitre le régime du traitement de données à caractère personnel de santé
1.3.1 - identifier les critères d'accès aux données des usagers : connaitre le cadre règlementaire et la notion d'équipe de soins
1.3.2 - connaitre les spécificités du stockage des données de santé [Système national des données de santé (SNDS) et les entrepôts de données de santé]
1.4.3 - connaitre le régime spécifique de traitement des données à des fins de recherche (Recherches Impliquant la personne humaine, Loi Jardé, RGPD, LIL)
3.2.6 - renseigner l'usager dans ses démarches
3.2.7 - adopter les bonnes pratiques et les bons outils pour interagir et partager des données de santé

---
N2-AUTOINDEXEE
Étude de la faisabilité et de l’intérêt de la mesure d’indicateurs de qualité et sécurité des soins sur les entrepôts de données de santé hospitaliers
https://www.has-sante.fr/jcms/p_3499689/fr/etude-de-la-faisabilite-et-de-l-interet-de-la-mesure-d-indicateurs-de-qualite-et-securite-des-soins-sur-les-entrepots-de-donnees-de-sante-hospitaliers
De nombreux indicateurs de qualité et sécurité des soins (IQSS) sont mesurés à partir d’un audit de dossier de patient. Cette mesure chronophage, est réalisée manuellement par les établissements de santé français sur un grand nombre de dossiers. Dans un contexte de ressources professionnelles contraintes, la HAS évalue la faisabilité et l’intérêt d’exploiter les entrepôts de données hospitalières (EDSH) pour ces mesures. Les EDSH sont définis comme la collecte et la structuration de l’information médicale des patients fréquentant un établissement de santé au sein d’une base de données unique. Les EDSH sont développés par les établissements de santé, majoritairement universitaires, afin de mieux gérer la complexité de leurs données et permettre de nouvelles réutilisations des données de soins collectées en routine. Ces nouveaux usages concernent majoritairement la recherche mais également d’autres types de réutilisation, notamment le pilotage des soins et la vigilance sanitaire. En plus de réduire le temps de recueil de ces IQSS, l’utilisation des EDSH pourrait par exemple permettre un suivi plus régulier des IQSS en dehors des campagnes organisées par la HAS, et de réaliser le calcul sur l’exhaustivité des populations concernées.
2024
HAS - Haute Autorité de Santé
France
rapport
laisse entrevoir
prestations des soins de santé
sécurité des données
études de faisabilité
recherche qualitative
sécurité informatique
indication de
hôpital
Mesures de sécurité
Entreposage de données
Sécurité des données
hôpitaux
étude de sécurité
indicateurs qualité santé
qualité des soins
Soins de santé
soins de
prestations des soins de santé
entrepôt
faisabilité

---
N1-VALIDE
Entrepôts de données de santé: à quoi cela sert?
Webinaire 9 - Mardis de la donnée de santé
https://www.youtube.com/watch?v=0w7qGqdV5Ao
Qu'est-ce qu'une donnée de santé?; Utilisations des données de santé; Pourquoi un EDS est-il utile?; Pourquoi l'hôpital fonctionne-t-il comme cela?; Ce fonctionnement est parfois limitant; Mais alors...comment dépasser ces limites?; Des bénéfices pour les patients; Ce dont nous n'avons pas encore parlé...;
2024
false
false
false
false
true
Health Data Hub
France
français
congrès ou conférence
matériel audio-visuel
Entreposage de données
entrepôt de données

---
N1-VALIDE
GCS G4
Groupement de coopération sanitaire Hôpitaux Universitaires Amiens Caen Lille Rouen
https://www.gcs-g4.fr/
Le GCS G4 souhaite porter une vision résolument partenariale entre les quatre centres hospitalo-universitaires de l’inter-région Nord-Ouest. L’objectif est de capitaliser sur les forces et les expertises de chacun des CHU et de leurs partenaires académiques (Universités et EPST), dans l’intérêt commun de tous. Cette ambition partagée s’appuie sur les liens privilégiés constitués progressivement entre les CHU de Rouen et Caen d’une part, Lille et Amiens d’autre part, dans leurs régions administratives respectives. Le projet est de renforcer la complémentarité des acteurs hospitalo-universitaires en partenariat avec les universités, les organismes de recherche, les collectivités territoriales et les ARS. Le GCS G4 est une réponse aux défis à relever collectivement, à savoir : soutenir la recherche et l’innovation, promouvoir et coordonner les soins d’excellence, conforter une formation de haut niveau, contribuer au développement des territoires du GCS G4. Son ambition est de créer des synergies et un effet levier en finançant des actions collectives de mise en réseau des acteurs.
2023
false
false
false
CHRU de Lille - Centre Hospitalier Régional et Universiatire de Lille
France
français
réseau coordonné
France
hôpitaux universitaires
Entreposage de données

---
N2-AUTOINDEXEE
Réutilisation des données de réanimation : État de lieux des bases existantes et mise en place d’un entrepôt de données de réanimation au CHU de Rouen
https://dumas.ccsd.cnrs.fr/dumas-04208241/
Contexte : Les services des réanimations prennent en charge les patients les plus graves avec un haut risque de mortalité. En raison de l'état critique de ces patients, une surveillance étroite est nécessaire, conduisant à la collecte d'un volume important de données. Des collaborations ont permis l'émergence de grandes bases de données en accès libre à l’origine de nombreuses publications dans le domaine. Objectif : L'objectif de cette revue de la littérature est d'identifier les caractéristiques des études utilisant des bases de données ouvertes de soins intensifs et de décrire la contribution de ces études à la recherche en soins intensifs. Méthodes : La recherche a été effectuée à partir de 3 bases de données (PubMed - Medline, Embase, Web of Science) de la création de la base de données jusqu'au 1er août 2022. Ont été inclus les articles originaux basés sur 4 bases de données ouvertes concernant des patients adultes admis en unités de réanimation (Amsterdam University Medical Centers Database (AmsterdamUMC), Collaborative Research Database (eICU-CRD), High time resolution ICU dataset (HiRID), Medical Information Mart for Intensive Care (MIMIC)). Les caractéristiques liées à la description des publications, à la conception des études et aux analyses statistiques ont été extraites et analysées.
2023
DUMAS - Dépôt Universitaire de Mémoires Après Soutenance
France
thèse ou mémoire
accouchement
Préparer
insertion
être
Entreposage de données
raisonnement
mise en place
Base de données
hôpitaux universitaires
va bien
bases de données comme sujet
entrepôt
réanimation
réutilisation de matériel
base de données
réanimation
Mutation par insertion
réutiliser

---
N1-VALIDE
Entrepôt de données de santé du CHU de Rouen Normandie
https://www.cismef.org/cismef/wp/wp-content/uploads/2023/01/EDSaN-Rouen-jan-2023.pdf
Qu'est-ce que c'est; Objectifs des EDS; Aujourd'hui dans les CH; État de l'art; Entrepôt de données de santé au CHU de Rouen; EDS Rouen; HeTOP Terminology server; ECMT Semantic Annotator (NLP 1 Deep learning); Multiterminology Multilingual Semantic search engine; NoSQL Architecture; Résultats; EDS Rouen; Volumétrie; Couverture fonctionnelle; Politique d'accès à EDSaN; Résultats & Outils; Plateforme EDSaN; Outil modulaire de recherche; Création de requêtes rapides; Combiner les requêtes des modules; Consultation et sélection des dossiers patients; Assistant sémantique; Analyses textuels (module Doc'EDS); Doc'EDS (module document); ECMT: annotation automatique des documents textuels; ECMT - Étude qualitative; Bilan février 2021; États des lieux; Le pourquoi du succès; Valorisation; En développement; Perspectives;
2023
false
false
false
false
true
Université de Rouen, UFR Santé
CHU de Rouen
France
français
cours
Entreposage de données
santé
Entreposage de données
terminologie comme sujet
moteur de recherche
1.3.2 - connaitre les spécificités du stockage des données de santé [Système national des données de santé (SNDS) et les entrepôts de données de santé]
moteur de recherche
entrepôt de données
Terminologie

---
N3-AUTOINDEXEE
La résistance dans les infections bactériennes : apport de l'entrepôt de données de santé de l'AP-HP
https://www.theses.fr/2022UPASR016
L'objectif de cette thèse était d'évaluer l'apport des données hospitalières pour l'étude des infections bactériennes résistantes aux antibiotiques, à travers l'exemple des bactériémies et de l'Entrepôt de Données de Santé de l'Assistance Publique - Hôpitaux de Paris.Une base de données clinico-microbiologiques de plus de 30 000 patients hospitalisés avec une bactériémie dans 14 hôpitaux avec une activité de soins aigus entre 2016 et 2019 a été structurée (base BactHub). Un travail exploratoire évalue l'apport d'un programme de Traitement Automatisé du Langage Naturel pour l'identification des sites primaires des bactériémies dans les comptes-rendus, en comparaison avec les codages CIM-10.Les principales caractéristiques des patients, premiers épisodes et bactéries sont décrites, selon l'origine communautaire ou nosocomiale de la bactériémie. Plus de la moitié des patients étaient de sexe masculin, et d'âge 60 ans. Les taux de mortalité étaient non négligeables, et allaient de 14 à 19% en intra-hospitalier à 20-26% à J90. Les taux de résistance aux antibiotiques étaient importants : K. pneumoniae C3G-R, 21-37% ; E. coli C3G-R 13-17% ; SARM 11-14%. La comparaison de nos résultats avec la littérature conforte l'utilisation de la base pour la recherche.Ensuite, une étude souligne l'impact majeur de l'identification d'une Klebsiella spp. C3G-R (OR 4,7), et de manière secondaire d'un E. coli C3G-R (OR 2,5), sur le risque de récurrence de bactériémie à 1 an, dans les bactériémies communautaires, après ajustement. A contrario, l'identification d'un SARM n'était pas liée à la récurrence.Enfin, les points clés et les défis liés à l'étude du lien entre l'exposition individuelle aux antibiotiques et la survenue d'infections bactériennes communautaires résistantes aux antibiotiques sont présentés. Afin d'améliorer et de standardiser les futures études, une proposition est discutée. En conclusion, l'enrichissement de la base avec des données issues du SNDS augmenterait fortement le potentiel de la base pour la recherche.
2022
theses.fr
France
Infection
infections bactériennes
maladie infectieuse bactérienne
santé
résistance aux infections
ensemble de données
Entreposage de données
résistance bactérienne

---
N3-AUTOINDEXEE
Contributions à l'extraction d'information dans un entrepôt de données hospitalier : une aide pour la recherche clinique
https://tel.archives-ouvertes.fr/tel-03857962
Le développement des technologies numériques a conduit à la numérisation des informations médicales et à la dématérialisation des dossiers papiers en dossiers patients informatisés (DPI). Les données générées dans un hôpital contiennent des informations précieuses pour la recherche médicale. Les hôpitaux ont mis en place des entrepôts de données (EDS) pour faciliter l’utilisation secondaire des données. Dans un EDS, les chercheurs ont besoin d’identifier les patients éligibles à une étude clinique et de retourner au DPI pour remplir le cahier d’observation électronique d’une étude. La principale difficulté réside dans le caractère non structuré des informations médicales présentes sous forme de texte libre. Des méthodes de traitement automatique de la langue sont nécessaires pour structurer les données afin de faciliter leur interrogation et leur extraction. L’objectif de cette thèse était de développer des outils et des méthodes pour aider les chercheurs à mener des études de faisabilité et à trouver des informations dans un DPI. Les principales contributions de cette thèse sont les suivantes: une terminologie sur les médicaments en langue française. De nombreuses études s’intéressent à l’utilisation, l’efficacité et à la tolérance des médicaments en vie réelle. Les médicaments permettent aussi d’identifier certaines maladies. L’absence d’une terminologie normalisée du médicament a conduit à la construction de Romedi, référentiel ouvert du médicament, qui offre de bonnes performances pour détecter et identifier les médicaments dans les données hospitalières. Un annotateur sémantique scalable à un entrepôt de données. L’annotation sémantique consiste à relier des séquences de mots d’un document aux concepts d’une terminologie. Elle permet la détection et l’indexation de concepts médicaux. Comment indexer des millions de documents d’un EDS avec des terminologies médicales contenant plusieurs centaines de milliers de termes ? Dans ce travail, nous proposons un nouvel algorithme, IAMsystem, scalable à l’échelle d’un entrepôt de données et dont la complexité dépend peu de la taille d’une terminologie. Un inventaire de sens des abréviations médicales. Les abréviations sont largement utilisées en médecine. Elles ajoutent de la complexité aux tâches de traitement automatique de la langue et doivent être prises en compte par un annotateur sémantique. Ce travail présente deux algorithmes pour détecter automatiquement des abréviations à partir d’un corpus de documents médicaux et propose le premier inventaire d’abréviations issu de données hospitalières en langue française. [...]
2022
TEL - Thèses en ligne
France
thèse ou mémoire
Recherches
Aides à la recherche
extraction
Entreposage de données
soutien financier à la recherche comme sujet
extraction d'informations
recherche biomédicale
hôpital
extraction des données
hôpitaux

---
N1-VALIDE
https://www.cismef.org/cismef/wp/wp-content/uploads/2022/10/SCDW-Rouen-october-2022.pdf
https://www.cismef.org/cismef/wp/wp-content/uploads/2022/11/Semantic-Clinical-Data-Warehouse-in-Rouen-University-Hospital-Normandy-France.pdf
https://www.youtube.com/watch?v=NZgKmkq9bZc
RUH DBI; Definition; HDW Objectives in general; HDW Objectives for pharmaceutical companies; CDW State of the art; Semantic HDW based on three independent layers; HeTOP Terminology server; ECMT Semantic Annotator (NLP & Deep Learning); Overall ECMT process; Multiterminology Multilingual Semantic search engine; Technical aspects; NoSQL Architecture; Acess Policy to EDSaN; Results; HDW Rouen - volumetry; HDW Rouen – functional coverage; Main steps are already performed...; EDSaN Platform; Modular search engine; Selection tool; Doc’EDS; Analyses; Data mining (ECMT) word cloud; Where EDSaN stands in August 2022; State of the play; Use cases of the SCDW; Keys to « success »; Still in development; Perspectives; Wordembeddings in two different contexts; Doc2Vec2PubMed; Valorization; Publications
2022
false
false
false
false
true
Université de Rouen, UFR Santé
France
anglais
cours
Entreposage de données
entrepôt de données
matériel d'enseignement audio-visuel

---
N1-VALIDE
Entrepôt de données de santé
https://www.cismef.org/cismef/wp/wp-content/uploads/2022/11/EDSaN_Rouen_nov2022.pdf
Objectifs pédagogiques; EDS - Qu’est-ce que c’est; Objectifs des EDS; Aujourd’hui dans les CH, État des lieux des EDS; Approche rouennaise pour l’EDS; EDS Rouen; EDSaN au CHU de Rouen; EDS Rouen - couverture fonctionnelle; Aspects méthodologiques et techniques; Architecture technique EDSaN; Politique d’accès à EDSaN; Résultats & Outils; Plateforme EDSaN; Outil modulaire de recherche; Les fonctions techniques des EDS; Analyses textuels (module Doc’EDS); Doc’EDS (module document); ECMT : annotation automatique des documents textuels; Exemple COVID long; Tableaux de bord; Exemple Épidémie de bronchiolites aux urgences pédiatriques 2022, CHU de Rouen; Expérience EDSaN : bilan novembre 2022; État des lieux; Les acteurs impliqués; Points forts et limites; Perspectives/problématiques futures
2022
false
false
false
false
true
Université de Rouen, UFR Santé
France
français
Entreposage de données
entrepôt de données
cours
1.3.2 - connaitre les spécificités du stockage des données de santé [Système national des données de santé (SNDS) et les entrepôts de données de santé]

---
N1-VALIDE
EDSaNCoh et EDILS2.0 : résultats préliminaires et perspectives
https://dumas.ccsd.cnrs.fr/dumas-03858400
Avec l'adoption généralisée des dossiers médicaux électroniques (DME), des quantités de plus en plus importantes de données cliniques électroniques sont générées, ce qui fait que les chercheurs, les administrateurs de soins de santé et les cliniciens s'intéressent de plus en plus à l'utilisation de telles données. Le projet EDSaNCoh, sélectionné et financé par le FEDER (Fonds européen de développement régional), vise à développer une plateforme pour créer et alimenter automatiquement des e-cohortes prospectives. L'objectif final du projet est d'optimiser la recherche non interventionnelle sur les données épidémiologiques et cliniques en réduisant les erreurs humaines, la charge de travail, la complexité de la saisie des données et le temps consacré à la collecte des données par rapport aux méthodes de recherche actuelles, ce qui se traduit finalement par une réduction des coûts. Le premier projet tirant parti de l'infrastructure EDSaNCoh est EDILS2.0 (Eating Disorders Inventory Longitudinal Study) dont l'objectif principal est d'identifier, 2 et 5 ans après une première consultation pour Trouble du Comportement Alimentaire (TCA), les facteurs pronostiques de guérison, de rémission, de changement de type de trouble alimentaire et de décès ou suicide. METHODOLOGIE : Trois sont les sources de données combinées par l'infrastructure EDSaNCoh : l'entrepôt de données de santé du CHU de Rouen, le SNDS (système national des données de santé), et des questionnaires auto-administrables directement envoyés aux patients. Afin d'évaluer les capacités de l'algorithme construit pour EDILS2.0 à identifier correctement les patients répondant aux critères d'inclusion et à récupérer correctement les variables ciblées, ses performances ont été comparées automatiquement, sur un ensemble de documents aléatoires, à un gold standard humain. RESULTATS : L'algorithme a donné de bons résultats, atteignant 96 % de précision et 88,1 % de recall pour l'inclusion des patients. En ce qui concerne ses capacités d'extraction de caractéristiques, il a obtenu, sur un ensemble de 24 variables, une accuracy moyenne de 94,08%. CONCLUSION : Selon les résultats préliminaires, EDILS2.0 montre une qualité de données très prometteuse, une qualité qui est, je crois, encore améliorable. Les optimisations suggérées sont de nature conservatrice, elles sont faciles à mettre en œuvre et ne nécessitent pas d'adaptations des pratiques de travail, ce qui devrait se traduire par une mise en œuvre sans friction. En cas de succès, elles feront passer la précision de l'algorithme d'extraction des caractéristiques dans une zone de confiance, au-delà de la barre des 95 %, ce qui est crucial pour la fiabilité des analyses futures. Tel résultat servira également de manifeste des bons résultats que l'on peut obtenir avec les e-cohortes et de la qualité du projet EDSaNCoh et favorisera l'intérêt pour cette technologie.
2022
false
false
false
DUMAS - Dépôt Universitaire de Mémoires Après Soutenance
France
français
thèse ou mémoire
Entreposage de données
systèmes informatisés de dossiers médicaux
Troubles de l'alimentation
entrepôt de données

---
N1-VALIDE
Entrepôts de données de santé hospitaliers en France
https://www.has-sante.fr/jcms/p_3386123/fr/entrepots-de-donnees-de-sante-hospitaliers-en-france
La HAS utilise depuis plusieurs années les données du système national de données de santé (SNDS) pour mener ses travaux d’évaluation et pour mesurer la qualité des soins. Elle s’intéresse également aux entrepôts de données de santé hospitaliers (EDSH) qui contiennent une grande quantité d’informations médicales complémentaires– des données de vie réelle - potentiellement utiles dans la réalisation de ses missions. Dans le cadre de sa stratégie data, elle a ainsi entrepris fin 2021 de dresser un panorama des EDSH en France. Un travail inédit qui révèle l’hétérogénéité d’un écosystème en pleine construction et qui va d’ores et déjà permettre à la HAS de lancer de nouvelles expérimentations.
2022
false
false
false
HAS - Haute Autorité de Santé
France
français
rapport
Entreposage de données
systèmes informatisés de dossiers médicaux
systèmes d'information hospitaliers
France
entrepôt de données
Entreposage de données

---
N2-AUTOINDEXEE
Note d'étape sur le Health Data Hub, les entrepôts de données de santé et les questions éthiques posées par la collecte et le traitement de données de santé dites « massives »
https://www.hal.inserm.fr/inserm-03533863/
Le CEI a mis en place un groupe de travail en octobre 2020 du fait des interrogations soulevées par la décision de confier l’hébergement des données du Système national des Données de Santé (SNDS) rassemblées par le Health Data Hub (HDH ou PDS pour Plateforme des données de santé) à la société Microsoft à travers son « cloud » Azure. Le groupe a été amené rapidement à élargir sa réflexion à un ensemble plus vaste de questions éthiques soulevées par la collecte et le traitement de données dites « massives » pouvant s’apparenter de près ou de loin à des données de santé.
2022
false
false
false
INSERM - Institut National de la Santé et de la Recherche Médicale
France
rapport
Mégadonnées
santé
éthique
Éthique
massif
Entreposage de données
collecte de données
questions éthiques

---
N1-VALIDE
Entrepôts de données: cas d'usage
https://www.cismef.org/cismef/wp/wp-content/uploads/2022/11/EDS_cas_dusages_2022.pdf
Cours présenté par Julien Grosjean. Cas 1: Situs Inversus; Contexte; Méthodologie EDS; Requêtes; Cas 2: Bicytopénie et hémolyse: stratégies diagnostiques et orientations en urgence; Cas 3: Filière fracture/prévention et suivi ostéoporose; Cas 4: Création d'une cohorte de patients atteints de TCA
2022
false
false
false
false
true
Université de Rouen, UFR Santé
France
français
cours
Entreposage de données
entrepôt de données
1.3.2 - connaitre les spécificités du stockage des données de santé [Système national des données de santé (SNDS) et les entrepôts de données de santé]

---
N2-AUTOINDEXEE
Délibération n 2021-118 du 7 octobre 2021 portant adoption d'un référentiel relatif aux traitements de données à caractère personnel mis en œuvre à des fins de création d'entrepôts de données dans le domaine de la santé
https://www.legifrance.gouv.fr/jorf/id/JORFTEXT000044239566
Portée du référentiel Ce référentiel précise le cadre juridique, issu du règlement général sur la protection des données (RGPD) et des dispositions nationales, applicable aux entrepôts de données de santé. Les responsables de traitement qui réalisent auprès de la Commission une déclarationde conformité au présent référentiel sont autorisés à mettre en œuvre un entrepôt de données de santé lorsque le traitement est strictement conforme au référentiel.
2021
Développement et Santé
France
recommandation
Entreposage de données
Données personnelles
7-methylbenzo[a]anthracene
santé
Caractère
adoption
adoption

---
N1-SUPERVISEE
EDSaN - Entrepôt de Données de Santé Normand du CHU de Rouen
https://edsan.chu-rouen.fr/edsan/
L’Entrepôt de Données de Santé (EDS) est un outil informatique permettant la collection, l’intégration puis le traitement des données de santé provenant d’un grand nombre de sources d’information clinique (dossier patient informatisé, système d’information des laboratoires et d’imagerie, prescription informatisée, dossier infirmier, etc.). Cette base de données centralisée permet d’agréger un maximum d’informations disponibles sur les patients quelle que soit l’application source. En ayant accès à ces données, l’EDS va donner la possibilité de croiser ces informations et donc de sélectionner finement des patients/données. L’EDS du CHU de Rouen se nomme EDSaN (pour Entrepôt de Données de Santé Normand). Il est opérationnel depuis octobre 2020.
false
false
false
CHU de Rouen
France
français
Entreposage de données
site institutionnel
information patient et grand public
information scientifique et technique
systèmes d'information hospitaliers

---
N2-AUTOINDEXEE
Entrepôts de données et intelligence artificielle
Webinar Commun OHI
https://youtu.be/WSrbaVr-3MI
https://sesstim.univ-amu.fr/video-box/webinar-sesstimohi-michel-volle
Michel VOLLE
2019
SESSTIM
France
matériel d'enseignement audio-visuel
Communication
ensemble de données
Communication
Intelligence artificielle
intelligence artificielle
Actualités
intelligence
Entreposage de données
Communication
plan de recherche
Communisme
Communications
Commune
ensemble de données
communication
actualités
communisme

---
N1-VALIDE
Intérêt de l’approche sémantique dans la constitution et l’exploitation d’un entrepôt de données de santé
Webinar QuanTIM
https://youtu.be/ZzczKuT7tLw
https://sesstim.univ-amu.fr/video-box/webinar-quantim-stefan-darmoni
Présentation faite par le Pr. Stéfan DARMONI : Le D2IM, Thématiques de recherche du D2IM, EDS - Qu'est-ce que c'est?, Objectifs des EDS, Aujourd'hui dans les CH, État des lieux des EDS, Approche rouennaise pour l'EDS, Un apport sémantique, EDS Rouen: 3 outils ressources autour de la sémantique, EDS Rouen, EDS Rouen - Volumétrie (octobre 2019), EDS Rouen - Couverture fonctionnelle, Couche SQL, Couche NoSQL, Entrepôt de données de santé - Proposition architecture sécurisée, Résultats et Outils, ECMTE, ECMT - Étude qualitative, Moteur de recherche complet (ASIS), ASIS, Analyses textuels (Doc'EDS), Cas d'usage et enjeux, Cas d'usage N 48, Cas d'usage Lubrizol, Valorisation, Aspects éthiques
2019
false
false
false
false
true
SESSTIM
France
sémantique
entrepôt de données
Annotation de données
moteur de recherche
SQL
Pas seulement SQL
1.3.2 - connaitre les spécificités du stockage des données de santé [Système national des données de santé (SNDS) et les entrepôts de données de santé]
Entreposage de données
Curation de données
moteur de recherche
sémantique
langages de programmation
matériel d'enseignement audio-visuel

---
N1-SUPERVISEE
Enjeux des entrepôts de données de santé
Webinar QuanTIM
https://youtu.be/EBT1L5IeHh0
https://sesstim.univ-amu.fr/video-box/webinar-quantim-anita-burgun
Cours présenté par Anita BURGUN
2018
false
false
false
true
SESSTIM
France
matériel d'enseignement audio-visuel
Entreposage de données
entrepôt de données

---
Nous contacter.
26/05/2024


[Accueil] [Haut de page]

© CHU de Rouen. Toute utilisation partielle ou totale de ce document doit mentionner la source.