" /> Lipid Metabolism and Toxicity Pathway - CISMeF





Preferred Label : Lipid Metabolism and Toxicity Pathway;

NCIt synonyms : Lipid Metabolism Pathway;

NCIt related terms : Nuclear Receptors in Lipid Metabolism and Toxicity;

Alternative definition : BIOCARTA: Nuclear receptors are transcription factors that are activated upon binding to its ligands. Initially, they had been classified as classic endocrine nuclear hormone receptors and orphan receptors. However, further studies have led to the identification of lipid ligands for some of these receptors, which are responsible for lipid metabolism, storage, and elimination. One of the characteristics of these receptors is that they act by forming heterodimers with retinoid X receptor (RXR). The receptors include peroxisome proliferators-Activated receptors (PPARs) for fatty acids, liver X receptor (LCR) for oxysterols, Farnesoid X receptors (FXR) for bile acids, and steroid xenobiotic receptor/X receptor (SXR/PXR or Nsil2) for xenobiotics. Other orphan receptors also requiring RXR for its functions are vitamin D receptor (VDR) for vitamin D and retinoic acid receptor (RAR) for retinoid acids, although these receptors are not involved in lipid metabolism. Upon binding to various ligands, three classes of proteins are synthesized including lipid binding proteins, the ATP-binding cassette (ABC) transporters and cytochrome P450 member proteins which catalyze lipid anabolism, metabolism, and elimination. In addition to lipid metabolism, some members of the cytochrome P450 family genes are responsible for activation of procarcinogens, detoxification of environmental toxins, and metabolism of drugs and xenobiotics. In particular, CAR, Nsil2, and recently identified VDR are important in up-regulation of these cytochromes. Of all the human cytochrome P450 genes, only a few CYP1A2, CYP2C9, CYP2C19, CYP2D6, CYP2E1, and CYP3A4 account for most toxicity effects, specifically CYP3A is responsible for clearing approximately half of the clinically prescribed drugs. For instance, acetaminophen, one of the most commonly used drug, is toxic in high doses due to the activation of CAR and the drug's subsequent conversion to acetyl-p-benzoquinone imine (NAPQI) by CYP1A2, CYP2E1 and CYP3A. (This definition may be outdated - see the DesignNote.);

NCIt note : The BIOCARTA Definition (ALT_DEFINITION) for this pathway concept was provided by BioCarta. This property was not created by, nor is it maintained by the NCI Thesaurus staff. Additionally, BioCarta is no longer updating its pathway data; thus, the BIOCARTA Definition might be outdated or inaccurate. Please see the Terms and Conditions for Use at http://www.biocarta.com/.;

Biocarta ID : h_nuclearRsPathway;

Details


You can consult :


Nous contacter.
12/05/2024


[Home] [Top]

© Rouen University Hospital. Any partial or total use of this material must mention the source.