Libellé préféré : réseaux neuronaux (ordinateur); 
Définition du MeSH : Architecture d'ordinateur, implantable soit sous forme matériel ou soit sous forme
               logiciel, modelisé d'après les réseaux neurologiques biologiques. Comme le système
               biologique dans lequel les possibilités de traitement sont un résultat des forces
               d'interconnexion entre les choix de noeuds de traitement non-linéaires, les réseaux
               neuronaux informatisés, souvent appelés perceptrons ou modèles connexionistes multicouche,
               se composent d'unités (ou noeuds) ressemblant à des neurones. Un groupe homogène d'unités
               compose une couche. Ces réseaux sont efficaces pour l'identification de modèle. Ils
               sont adaptatifs, exécutant par exemple des tâches, et sont ainsi meilleurs pour la
               prise de décision que sont les machines linéaires d'apprentissage ou l'analyse par
               classification. Elles n'exigent pas de programmation explicite. [Traduction effectuée
               avant 2008]; Ensemble de neurones artificiels interconnectés qui constitue une architecture de
               calcul (source BO Journal officiel du 9 décembre 2018).; 
Synonyme CISMeF : réseau neuronal; méthode neuromimétique; modèle neuromimétique; méthode connexioniste; modèle connexioniste; réseaux neuronaux; Réseau neurones; réseaux neuronaux (informatique); réseau neuronal (informatique); modèles connectionnistes; réseau de neurones; réseau de neurones artificiels; réseau de neurones formels; Perceptrons; modèles connexionnistes; modèles de réseaux neuronaux; modèles neuronaux; réseau neuronal (ordinateur); réseau neuronal artificiel; réseau de neurones formels; 
Lien Wikipédia : https://fr.wikipedia.org/wiki/Réseau de neurones artificiels; 
         
         
            Identifiant d'origine : D016571; 
CUI UMLS : C0870951; 
 Alignements automatiques CISMeF supervisés Alignements automatiques CISMeF supervisés
 Alignements automatiques exacts (par équipe CISMeF) Alignements automatiques exacts (par équipe CISMeF)
 Alignements automatiques faux Alignements automatiques faux
 Alignements manuels CISMeF Alignements manuels CISMeF
 Concept(s) lié(s) au record Concept(s) lié(s) au record
 Correspondances UMLS (même concept) Correspondances UMLS (même concept)
 Ne pas confondre avec Ne pas confondre avec
 Type(s) sémantique(s) Type(s) sémantique(s)
 Voir aussi Voir aussi
 
         
         
         
         Architecture d'ordinateur, implantable soit sous forme matériel ou soit sous forme
            logiciel, modelisé d'après les réseaux neurologiques biologiques. Comme le système
            biologique dans lequel les possibilités de traitement sont un résultat des forces
            d'interconnexion entre les choix de noeuds de traitement non-linéaires, les réseaux
            neuronaux informatisés, souvent appelés perceptrons ou modèles connexionistes multicouche,
            se composent d'unités (ou noeuds) ressemblant à des neurones. Un groupe homogène d'unités
            compose une couche. Ces réseaux sont efficaces pour l'identification de modèle. Ils
            sont adaptatifs, exécutant par exemple des tâches, et sont ainsi meilleurs pour la
            prise de décision que sont les machines linéaires d'apprentissage ou l'analyse par
            classification. Elles n'exigent pas de programmation explicite. [Traduction effectuée
            avant 2008]
Ensemble de neurones artificiels interconnectés qui constitue une architecture de
            calcul (source BO Journal officiel du 9 décembre 2018).
N3-AUTOINDEXEE
Intelligence artificielle et maladies neurologiques : aider le diagnostic et améliorer
            la compréhension du comportement des réseaux de neurones convolutifs
https://www.theses.fr/2022TOU30282
L'Intelligence Artificielle est désormais utilisée pour accomplir les tâches les plus
            diverses, de la reconnaissance de visage à la traduction de texte. Parmi ces méthodes
            inspirées du fonctionnement du cerveau humain, l'apprentissage profond (deep learning)
            a montré d'excellentes performances en analyse d'image à l'aide des réseaux de neurones
            convolutifs (CNN). Le milieu médical est en train de bénéficier de la puissance de
            ces outils consacrés notamment à l'aide au diagnostic, comme dans la maladie de Parkinson
            ou d'Alzheimer. L'utilisation des CNN et de l'imagerie par résonance magnétique nucléaire
            (IRM), qui permet d'étudier le cerveau dans sa structure et son fonctionnement, a
            montré des résultats très prometteurs. Toutefois, les CNN sont souvent appelés boites
            noires puisque leur fonctionnement n'est pas transparent pour ses utilisateurs. Ces
            travaux de thèse visent à mieux comprendre ces méthodes appliquées aux données IRM
            3D cérébrales pour aider au diagnostic des maladies neurologiques. En première étape,
            la manipulation des données d'entrée des CNN, nous a permis d'investiguer leur capacité
            discriminative. Nous avons ainsi étudié le comportement du CNN en comparant sa capacité
            à discriminer des images IRM originales et altérées. Les résultats obtenus par le
            CNN ont été très satisfaisants, ce qui a amené à rechercher quelles sont les zones
            de l'image les plus discriminantes pour la prédiction. En deuxième étape, nous avons
            étudié la pathologie, en se focalisant sur le nombre de sujets nécessaires au réseau
            lors de l'apprentissage pour garantir de bonnes performances. Cela est aussi un aspect
            crucial pour les méthodes de deep learning dont l'apprentissage requiert normalement
            beaucoup de données. Toutefois, dans le cadre médical nous avons accès à quelques
            centaines de données dans la plupart des cas. Nous avons démontré qu'un CNN est capable
            de bien discriminer un sujet sain d'un patient atteint d'atrophie multisystématisée
            (AMS), malgré un nombre limité de données d'entrée. A l'aide d'une technique récemment
            développée permettant de visualiser les parties de l'image considérées importantes
            par le CNN, nous avons montré que les parties discriminantes comprenaient des régions
            notamment d'intérêt pour la physiopathologie connue de l'AMS. La puissance discriminante
            du CNN a aussi été exploitée pour réaliser une discrimination entre sujets sains et
            patients en état de coma, en utilisant différentes séquences d'IRM. La méthode de
            visualisation a mis en lumière des régions en lien avec le coma, en confirmant les
            performances très satisfaisantes du réseau. Les études présentées dans cette thèse
            ouvrent la voie pour découvrir comment les informations englobées dans les données
            d'apprentissage peuvent aider à la recherche des signatures spatiales significatives
            obtenues par les CNN dans le cas particulier des données de neuroimagerie. L'application
            des CNN dans le cadre médical offre la possibilité d'aider le diagnostic de différentes
            maladies neurologiques en se basant exclusivement sur les données d'entrée. Cependant,
            la validité de ces résultats se fonde sur notre capacité à expliquer et éclairer ces
            méthodes pour en favoriser l'acceptation et, par conséquence, l'utilisation dans un
            contexte clinique.
2022
theses.fr
France
thèse ou mémoire
Accroître
Réseau
effet secondaire associé au système nerveux central
comportement
compréhension
comportement
Système nerveux
Neurones
Intelligence artificielle
Neurologie
Diagnostic
aucun diagnostic
compréhension
Maladie
maladie
intelligence
étude diagnostique
intelligence artificielle
maladies du système nerveux
compréhension
signe du système nerveux
maladie
diagnostic assisté par ordinateur
réseaux neuronaux (ordinateur)
neurone
comportement
---
N3-AUTOINDEXEE
Applications actuelles des réseaux de neurones pour l'étude des lésions hépatiques
            en IRM : revue systématique de la littérature et étude préliminaire dans notre centre
https://dumas.ccsd.cnrs.fr/dumas-03365090
Contexte : les réseaux de neurones deviennent progressivement une aide à la détection
            des lésions en imagerie médicale dans le but de gagner du temps sur des tâches simples
            et répétitives. Leur application en imagerie par résonance magnétique reste un challenge
            car il s’agit d’une modalité comportant de nombreuses séquences différentes, chaque
            séquence étant constituée de plusieurs coupes successives. L’objectif de ce travail
            est de dresser un état des lieux de l’avancée des réseaux de neurones pour l’étude
            des lésions hépatiques en IRM. Matériels et méthodes : nous avons conduit une revue
            systématique centrée sur les réseaux de neurones appliqués aux lésions hépatiques
            en IRM sur la base de données Medline, en accord avec les recommandations PRISMA.
            Nous présentons une étude préliminaire réalisée dans notre centre en deuxième partie.
            Résultats : la recherche Medline a rapporté 98 articles dont 17 ont été retenus après
            lecture complète du texte. Les études portaient sur la détection de lésions (4/17,
            24%), la caractérisation des lésions 5/17, 28%), la détection et la caractérisation
            (1/17, 6%), la prédiction du grade histologique de carcinome hépato-cellulaire (4/17,
            24%) ou la classification LIRADS (3/17, 18%). La majorité des études (16/17, 94%)
            nécessitait de fournir au logiciel une région centrée manuellement sur la lésion.
            Les auteurs ont utilisé des réseaux de neurones convolutifs, avec une configuration
            3D dans 41% des cas (7/17). Concernant la sensibilité sur l’échantillon test, 33%
            (5/15) des réseaux faisaient au moins une erreur toutes les 10 lésions et 60% (9/15)
            au moins une erreur toutes les 50 lésions. Cela montait à 75% (3/4) et 100% (4/4)
            sur l’échantillon validation. Concernant la précision (sensibilité   spécificité),
            69% (9/13) des réseaux faisaient au moins une erreur toutes les dix lésions et 100%
            (13/13) au moins une erreur toutes les 50 lésions. Conclusion : l’application des
            réseaux de neurones à la détection et la caractérisation de lésions hépatiques en
            IRM n’est que naissante. Ces logiciels pourraient à terme apporter des informations
            complémentaires, par exemple en détectant de petites lésions inaccessibles à l’œil
            humain ou en proposant un grading histologique non invasif, idée déjà émise par quelques
            travaux. Néanmoins, bien que les résultats de ces réseaux neuronaux semblent prometteurs
            de prime abord, ils n’atteignent pas encore les standards exigés en diagnostic radiologique
            et sont encore dépendants d’un important prétraitement manuel des images en amont.
2021
DUMAS - Dépôt Universitaire de Mémoires Après Soutenance
France
thèse ou mémoire
imagerie par résonance magnétique
classification
réseaux neuronaux (ordinateur)
Centre
foie, sai
Systématique
Littérature
Applications
Neurones
imagerie par résonance magnétique
lésion
Systématique
attention
Applications
plaies et blessures
central
Systématique
Systématique
collecte de données
littérature de revue comme sujet
hepatophyta
Applications
Revue systématique
Réseau
---
N3-AUTOINDEXEE
Bon temps mauvais temps : Prévision automatisée de la cryptosporidiose saisonnière
            en Ontario à base d’apprentissage machine
https://www.canada.ca/fr/sante-publique/services/rapports-publications/releve-maladies-transmissibles-canada-rmtc/numero-mensuel/2020-46/numero-6-4-juin-2020/utilisant-algorithmes-apprentissage-automatique-prevoir-surveillance-maladies-ontario.html
Contexte : L’augmentation de l’utilisation des mégadonnées et de la modélisation prédictive
            connexe fondée sur des algorithmes d’apprentissage automatique au cours des deux dernières
            décennies a fourni de nouvelles possibilités de surveillance des maladies et de préparation
            de la santé publique. Les mégadonnées s’accompagnent de la promesse d’une production
            et d’un accès plus rapide à des renseignements précis, ce qui pourrait faciliter la
            précision prédictive en santé publique (« santé publique de précision »). À titre
            d’exemple, nous avons envisagé de prévoir l’évolution future de l’incidence mensuelle
            de la cryptosporidiose en Ontario.
2020
false
false
false
false
Licence Creative Commons - Attribution (BY)
Gouvernement du Canada
Canada
réseaux neuronaux (ordinateur)
algorithmes
Mégadonnées
article de périodique
Ontario
cryptosporidiose
Apprentissage machine
---
N3-AUTOINDEXEE
Réseaux neuronaux convolutifs profonds et représentations hiérarchiques : applications
            et perspectives pour la pathologie numérique
https://www.theses.fr/2020STRAD026
Les réseaux neuronaux convolutifs profonds excellent à résoudre les problèmes de reconnaissance
            dans les images. Les avancées récentes dans le domaine de la numérisation des lames
            histologiques permettent aujourd’hui d’utiliser ces algorithmes dans de véritables
            applications biomédicales en microscopie. Des solutions d’analyse automatiques sont
            donc naturellement développées pour réduire les erreurs de diagnostic. Nous présentons
            deux applications, l’une pour l’analyse de marquages immunohistochimiques, l’autre
            pour assister le diagnostic des lymphomes. Nous présentons enfin les limites de l’apprentissage
            profond pour résoudre les problématiques biomédicales. Cette critique conduit à repenser
            l’apprentissage profond comme un soutien aux outils de fouille de données. Par le
            biais d’arbres de segmentations ou de subsomptions, ces techniques, soutenues par
            l’apprentissage profond, sont compatibles avec l’interprétation humaine, économes
            en annotation et en apprentissage.
2020
theses.fr
France
thèse ou mémoire
Applications
PATHOLOGIE
maladie
Applications
Pathologie
Pathologie
Pathologie
réseaux neuronaux (ordinateur)
Pathologie
Pathologie
Applications
neurone, sai
Pathologie
Pathologie
Pathologie
Réseau
applications mobiles
---
N2-AUTOINDEXEE
Interprétation d'images basée sur la technologie des réseaux de neurones
http://doc.rero.ch/record/323738?ln=fr
Depuis quelques années, les systèmes d’intelligence artificielle ont vu une accélération
            de leur développement. Les avancées rapides dans ce milieu ont créé une peur chez
            les populations. Et si ces systèmes pouvaient être utilisés pour protéger les personnes
            ? L’idée de ce travail de bachelor est de pouvoir créer un système permettant d’exploiter
            des caméras de surveillance tout en gardant l’anonymat des personnes. Les caméras
            seraient donc connectées à un réseau de neurones qui pourrait compter les personnes
            qui se trouvent dans une pièce, sans devoir stocker ces images. De plus, l’utilisateur
            de ce système n’aurait même pas besoin d’avoir accès aux images. Pour le créer, j’ai
            tout d’abord fait une recherche dans le but de comprendre le fonctionnement d’un réseau
            de neurones, comment celui-ci peut être appliqué à de la reconnaissance d’image et
            quelles sont les bonnes pratiques à appliquer lors de l’entrainement de ce type de
            systèmes. Ensuite, je démontre comment utiliser la librairie de machine learning TensorFlow
            et pour finir, je crée un système capable de compter combien de personnes se trouvent
            dans un centre commercial
2018
RERO DOC - Réseau des bibliothèques de Suisse occidentale
Suisse
thèse ou mémoire
Interprète
interprète
réseaux neuronaux (ordinateur)
Technologie
Neurones
Réseau
technologie
neurones
réseau
---
N3-AUTOINDEXEE
Circuits et réseaux de neurone, bruit, traitement de l'information
http://archives.uness.fr/sites/umvf/media/ressWikinu/Neurophysiologie/Neurophysiologie_UPMC/2007-neurophysio-circuits-reseau-bruit-jfv.pdf
Circuits et réseaux de neurones; Principe de convergence-divergence; Fonctionnement
            statistique; Circuit d’inhibition récurrente; Circuit d’inhibition latérale; Circuit
            d’inhibition antagoniste; Circuits de blocage ou portillon; Circuit réverbérant ou
            de rétroaction positive; Circuit amplificateur; Grands réseaux de neurones; Réseaux
            ordonnés; Réseaux aléatoires; Réseaux dynamiques; Réseaux partagés; Rôle du bruit;
            Le bruit est bénéfique; Intérêt du bruit; Le bruit génère des rythmes; Genèse de rythme
            respiratoire; Neurobiologie numérique; Les outils composant XNBC; Les réseaux de neurones
            formels: Le neurone formel; Architecture générale d’un RNF; Architecture générale
            d’un RNF; Structure d’Interconnexion; Apprentissage; Apprentissage supervisé; Apprentissage
            non supervisé; Règles d’apprentissage; Réseau dynamique de Hopfield; Mémoire associative;
            Le perceptron; Limite du perceptron; Le perceptron multicouche; Combien de couches?;
            Réseaux auto-organisés; Apprentissage compétitif; Cartes de Kohonen; Résonance adaptative;
            ART net, Novelty detector; Conclusion
2012
false
true
false
true
1er cycle / licence
false
UVP5 - Wikinu médecine
Paris
France
Physiologie des fonctions sensorielles et du système nerveux
cours
réseaux neuronaux (ordinateur)
traitement automatique des données
Traitement de l'information
bruit
réseaux neuronaux (ordinateur)
traitement automatique des données
Traitement de l'information
---
N3-AUTOINDEXEE
Interactions entre excitation et désir sexuel : des relations interpersonnelles aux
            réseaux neuronaux
https://www.revmed.ch/revue-medicale-suisse/2007/revue-medicale-suisse-104/interactions-entre-excitation-et-desir-sexuel-des-relations-interpersonnelles-aux-reseaux-neuronaux
2007
false
true
false
RMS - Revue Médicale Suisse
article de périodique
relations interpersonnelles
réseaux neuronaux (ordinateur)
coït
---