Libellé préféré : Neurones;

Détails


Consulter ci-dessous une sélection des principales ressources :

Vous pouvez consulter :


N3-AUTOINDEXEE
Maladies des neurones moteurs et exposition professionnelle au champ magnétique
https://www.yearbook-ers.jle.com/e-docs/maladies_des_neurones_moteurs_et_exposition_professionnelle_au_champ_magnetique_332417/yb_breve.phtml
La principale maladie des neurones moteurs (MNM) est la sclérose latérale amyotrophique (SLA) (ou maladie de Charcot) dont l’origine est inconnue. Parmi les facteurs de risque suspectés figurent l’exposition au champ magnétique basse fréquence ainsi que les chocs électriques. Depuis la fin des années 1980, une vingtaine d’études ont investigué l’exposition au champ magnétique en tant que facteur de risque de SLA et maladies apparentées. Certaines ont trouvé une association, d’autres non, mais aucune relation causale n’a été établie, et aucun mécanisme crédible n’a été démontré.
2022
John Libbey Eurotext
France
article de périodique
effets de l'exposition à un agent externe
Neurones
champs magnétiques
Maladie professionnelle
maladies professionnelles
maladie du neurone moteur
exposition professionnelle
Maladie du neurone moteur
Maladies
maladies du motoneurone

---
N3-AUTOINDEXEE
Intelligence artificielle et maladies neurologiques : aider le diagnostic et améliorer la compréhension du comportement des réseaux de neurones convolutifs
https://www.theses.fr/2022TOU30282
L'Intelligence Artificielle est désormais utilisée pour accomplir les tâches les plus diverses, de la reconnaissance de visage à la traduction de texte. Parmi ces méthodes inspirées du fonctionnement du cerveau humain, l'apprentissage profond (deep learning) a montré d'excellentes performances en analyse d'image à l'aide des réseaux de neurones convolutifs (CNN). Le milieu médical est en train de bénéficier de la puissance de ces outils consacrés notamment à l'aide au diagnostic, comme dans la maladie de Parkinson ou d'Alzheimer. L'utilisation des CNN et de l'imagerie par résonance magnétique nucléaire (IRM), qui permet d'étudier le cerveau dans sa structure et son fonctionnement, a montré des résultats très prometteurs. Toutefois, les CNN sont souvent appelés boites noires puisque leur fonctionnement n'est pas transparent pour ses utilisateurs. Ces travaux de thèse visent à mieux comprendre ces méthodes appliquées aux données IRM 3D cérébrales pour aider au diagnostic des maladies neurologiques. En première étape, la manipulation des données d'entrée des CNN, nous a permis d'investiguer leur capacité discriminative. Nous avons ainsi étudié le comportement du CNN en comparant sa capacité à discriminer des images IRM originales et altérées. Les résultats obtenus par le CNN ont été très satisfaisants, ce qui a amené à rechercher quelles sont les zones de l'image les plus discriminantes pour la prédiction. En deuxième étape, nous avons étudié la pathologie, en se focalisant sur le nombre de sujets nécessaires au réseau lors de l'apprentissage pour garantir de bonnes performances. Cela est aussi un aspect crucial pour les méthodes de deep learning dont l'apprentissage requiert normalement beaucoup de données. Toutefois, dans le cadre médical nous avons accès à quelques centaines de données dans la plupart des cas. Nous avons démontré qu'un CNN est capable de bien discriminer un sujet sain d'un patient atteint d'atrophie multisystématisée (AMS), malgré un nombre limité de données d'entrée. A l'aide d'une technique récemment développée permettant de visualiser les parties de l'image considérées importantes par le CNN, nous avons montré que les parties discriminantes comprenaient des régions notamment d'intérêt pour la physiopathologie connue de l'AMS. La puissance discriminante du CNN a aussi été exploitée pour réaliser une discrimination entre sujets sains et patients en état de coma, en utilisant différentes séquences d'IRM. La méthode de visualisation a mis en lumière des régions en lien avec le coma, en confirmant les performances très satisfaisantes du réseau. Les études présentées dans cette thèse ouvrent la voie pour découvrir comment les informations englobées dans les données d'apprentissage peuvent aider à la recherche des signatures spatiales significatives obtenues par les CNN dans le cas particulier des données de neuroimagerie. L'application des CNN dans le cadre médical offre la possibilité d'aider le diagnostic de différentes maladies neurologiques en se basant exclusivement sur les données d'entrée. Cependant, la validité de ces résultats se fonde sur notre capacité à expliquer et éclairer ces méthodes pour en favoriser l'acceptation et, par conséquence, l'utilisation dans un contexte clinique.
2022
theses.fr
France
thèse ou mémoire
Accroître
Réseau
effet secondaire associé au système nerveux central
comportement
compréhension
comportement
Système nerveux
Neurones
Intelligence artificielle
Neurologie
Diagnostic
aucun diagnostic
compréhension
Maladie
maladie
intelligence
étude diagnostique
intelligence artificielle
maladies du système nerveux
compréhension
signe du système nerveux
maladie
diagnostic assisté par ordinateur
réseaux neuronaux (ordinateur)
neurone
comportement

---
N3-AUTOINDEXEE
Applications actuelles des réseaux de neurones pour l'étude des lésions hépatiques en IRM : revue systématique de la littérature et étude préliminaire dans notre centre
https://dumas.ccsd.cnrs.fr/dumas-03365090
Contexte : les réseaux de neurones deviennent progressivement une aide à la détection des lésions en imagerie médicale dans le but de gagner du temps sur des tâches simples et répétitives. Leur application en imagerie par résonance magnétique reste un challenge car il s’agit d’une modalité comportant de nombreuses séquences différentes, chaque séquence étant constituée de plusieurs coupes successives. L’objectif de ce travail est de dresser un état des lieux de l’avancée des réseaux de neurones pour l’étude des lésions hépatiques en IRM. Matériels et méthodes : nous avons conduit une revue systématique centrée sur les réseaux de neurones appliqués aux lésions hépatiques en IRM sur la base de données Medline, en accord avec les recommandations PRISMA. Nous présentons une étude préliminaire réalisée dans notre centre en deuxième partie. Résultats : la recherche Medline a rapporté 98 articles dont 17 ont été retenus après lecture complète du texte. Les études portaient sur la détection de lésions (4/17, 24%), la caractérisation des lésions 5/17, 28%), la détection et la caractérisation (1/17, 6%), la prédiction du grade histologique de carcinome hépato-cellulaire (4/17, 24%) ou la classification LIRADS (3/17, 18%). La majorité des études (16/17, 94%) nécessitait de fournir au logiciel une région centrée manuellement sur la lésion. Les auteurs ont utilisé des réseaux de neurones convolutifs, avec une configuration 3D dans 41% des cas (7/17). Concernant la sensibilité sur l’échantillon test, 33% (5/15) des réseaux faisaient au moins une erreur toutes les 10 lésions et 60% (9/15) au moins une erreur toutes les 50 lésions. Cela montait à 75% (3/4) et 100% (4/4) sur l’échantillon validation. Concernant la précision (sensibilité spécificité), 69% (9/13) des réseaux faisaient au moins une erreur toutes les dix lésions et 100% (13/13) au moins une erreur toutes les 50 lésions. Conclusion : l’application des réseaux de neurones à la détection et la caractérisation de lésions hépatiques en IRM n’est que naissante. Ces logiciels pourraient à terme apporter des informations complémentaires, par exemple en détectant de petites lésions inaccessibles à l’œil humain ou en proposant un grading histologique non invasif, idée déjà émise par quelques travaux. Néanmoins, bien que les résultats de ces réseaux neuronaux semblent prometteurs de prime abord, ils n’atteignent pas encore les standards exigés en diagnostic radiologique et sont encore dépendants d’un important prétraitement manuel des images en amont.
2021
DUMAS - Dépôt Universitaire de Mémoires Après Soutenance
France
thèse ou mémoire
imagerie par résonance magnétique
classification
réseaux neuronaux (ordinateur)
Centre
foie, sai
Systématique
Littérature
Applications
Neurones
imagerie par résonance magnétique
lésion
Systématique
attention
Applications
plaies et blessures
central
Systématique
Systématique
collecte de données
littérature de revue comme sujet
hepatophyta
Applications
Revue systématique
Réseau

---
N2-AUTOINDEXEE
Interprétation d'images basée sur la technologie des réseaux de neurones
http://doc.rero.ch/record/323738?ln=fr
Depuis quelques années, les systèmes d’intelligence artificielle ont vu une accélération de leur développement. Les avancées rapides dans ce milieu ont créé une peur chez les populations. Et si ces systèmes pouvaient être utilisés pour protéger les personnes ? L’idée de ce travail de bachelor est de pouvoir créer un système permettant d’exploiter des caméras de surveillance tout en gardant l’anonymat des personnes. Les caméras seraient donc connectées à un réseau de neurones qui pourrait compter les personnes qui se trouvent dans une pièce, sans devoir stocker ces images. De plus, l’utilisateur de ce système n’aurait même pas besoin d’avoir accès aux images. Pour le créer, j’ai tout d’abord fait une recherche dans le but de comprendre le fonctionnement d’un réseau de neurones, comment celui-ci peut être appliqué à de la reconnaissance d’image et quelles sont les bonnes pratiques à appliquer lors de l’entrainement de ce type de systèmes. Ensuite, je démontre comment utiliser la librairie de machine learning TensorFlow et pour finir, je crée un système capable de compter combien de personnes se trouvent dans un centre commercial
2018
RERO DOC - Réseau des bibliothèques de Suisse occidentale
Suisse
thèse ou mémoire
Interprète
interprète
réseaux neuronaux (ordinateur)
Technologie
Neurones
Réseau
technologie
neurones
réseau

---
Nous contacter.
28/04/2024


[Accueil] [Haut de page]

© CHU de Rouen. Toute utilisation partielle ou totale de ce document doit mentionner la source.