Libellé préféré : neurone;

Synonyme CISMeF : neurones; cellule neurale;

Traductions automatiques des définitions par l'ANS : Un neurone typique se compose d'un corps cellulaire, contenant le noyau et le cytoplasme environnant (périkaryon), plusieurs processus de radiations courts (dendrites), et un processus long (l'axone) qui se termine dans les branches de type gémellaire (telodendrons) et peut avoir des branches (collatérales) projetant son trajet.;

Traductions automatiques par l'ANS : cellule nerveuse; Neuron; Cellules nerveuses; Cellules neurales; neurocyte;

Codes issus des synonymes : CDR0000269444; CDR0000269443;

Détails


Consulter ci-dessous une sélection des principales ressources :

Vous pouvez consulter :


N3-AUTOINDEXEE
Intelligence artificielle et maladies neurologiques : aider le diagnostic et améliorer la compréhension du comportement des réseaux de neurones convolutifs
https://www.theses.fr/2022TOU30282
L'Intelligence Artificielle est désormais utilisée pour accomplir les tâches les plus diverses, de la reconnaissance de visage à la traduction de texte. Parmi ces méthodes inspirées du fonctionnement du cerveau humain, l'apprentissage profond (deep learning) a montré d'excellentes performances en analyse d'image à l'aide des réseaux de neurones convolutifs (CNN). Le milieu médical est en train de bénéficier de la puissance de ces outils consacrés notamment à l'aide au diagnostic, comme dans la maladie de Parkinson ou d'Alzheimer. L'utilisation des CNN et de l'imagerie par résonance magnétique nucléaire (IRM), qui permet d'étudier le cerveau dans sa structure et son fonctionnement, a montré des résultats très prometteurs. Toutefois, les CNN sont souvent appelés boites noires puisque leur fonctionnement n'est pas transparent pour ses utilisateurs. Ces travaux de thèse visent à mieux comprendre ces méthodes appliquées aux données IRM 3D cérébrales pour aider au diagnostic des maladies neurologiques. En première étape, la manipulation des données d'entrée des CNN, nous a permis d'investiguer leur capacité discriminative. Nous avons ainsi étudié le comportement du CNN en comparant sa capacité à discriminer des images IRM originales et altérées. Les résultats obtenus par le CNN ont été très satisfaisants, ce qui a amené à rechercher quelles sont les zones de l'image les plus discriminantes pour la prédiction. En deuxième étape, nous avons étudié la pathologie, en se focalisant sur le nombre de sujets nécessaires au réseau lors de l'apprentissage pour garantir de bonnes performances. Cela est aussi un aspect crucial pour les méthodes de deep learning dont l'apprentissage requiert normalement beaucoup de données. Toutefois, dans le cadre médical nous avons accès à quelques centaines de données dans la plupart des cas. Nous avons démontré qu'un CNN est capable de bien discriminer un sujet sain d'un patient atteint d'atrophie multisystématisée (AMS), malgré un nombre limité de données d'entrée. A l'aide d'une technique récemment développée permettant de visualiser les parties de l'image considérées importantes par le CNN, nous avons montré que les parties discriminantes comprenaient des régions notamment d'intérêt pour la physiopathologie connue de l'AMS. La puissance discriminante du CNN a aussi été exploitée pour réaliser une discrimination entre sujets sains et patients en état de coma, en utilisant différentes séquences d'IRM. La méthode de visualisation a mis en lumière des régions en lien avec le coma, en confirmant les performances très satisfaisantes du réseau. Les études présentées dans cette thèse ouvrent la voie pour découvrir comment les informations englobées dans les données d'apprentissage peuvent aider à la recherche des signatures spatiales significatives obtenues par les CNN dans le cas particulier des données de neuroimagerie. L'application des CNN dans le cadre médical offre la possibilité d'aider le diagnostic de différentes maladies neurologiques en se basant exclusivement sur les données d'entrée. Cependant, la validité de ces résultats se fonde sur notre capacité à expliquer et éclairer ces méthodes pour en favoriser l'acceptation et, par conséquence, l'utilisation dans un contexte clinique.
2022
theses.fr
France
thèse ou mémoire
Accroître
Réseau
effet secondaire associé au système nerveux central
comportement
compréhension
comportement
Système nerveux
Neurones
Intelligence artificielle
Neurologie
Diagnostic
aucun diagnostic
compréhension
Maladie
maladie
intelligence
étude diagnostique
intelligence artificielle
maladies du système nerveux
compréhension
signe du système nerveux
maladie
diagnostic assisté par ordinateur
réseaux neuronaux (ordinateur)
neurone
comportement

---
Nous contacter.
07/09/2024


[Accueil] [Haut de page]

© CHU de Rouen. Toute utilisation partielle ou totale de ce document doit mentionner la source.