" /> L'Intelligence Artificielle au service de la médecine de précision en transplantation - CISMeF





Titre : L'Intelligence Artificielle au service de la médecine de précision en transplantation;

URL : https://www.theses.fr/2023LIMO0047

Description : Les travaux présentés ont eu pour objectif de proposer des utilisations appropriées de l’intelligence artificielle (IA) pour la médecine de précision en transplantation. Assurer une prise en charge personnalisée nécessite de combiner de nombreuses informations sur : le patient, le greffon, et les traitements immunosuppresseurs. L’IA offre la possibilité de sélectionner et combiner de nombreuses variables. Dans une première étude, nous avons montré l’apport de l’estimation de l’AUC et des adaptations de posologie par méthode bayésienne (une forme ‘primitive’ d’IA) chez 1 051 transplantés rénaux pédiatriques traités par mycophénolate mofétil. Quand les ajustements de doses proposés étaient suivis, l’intervalle cible d’AUC était plus souvent atteint (p 0,08 à 0,006) et la variabilité de l’exposition était significativement réduite (p 0,03 à 0,003). Dans un deuxième travail, nous avons mis au point un algorithme de Machine Learning pour estimer l’AUC0-12h de l’évérolimus en partant de 508 profils pharmacocinétiques réels, et nous l’avons amélioré en enrichissant progressivement la base d’apprentissage avec des profils simulés (avec un optimal d’environ 5 000 simulations) pour atteindre un écart quadratique moyen (RMSE) de 10,8 µg.h/L en validation externe. Nous avons également mis en évidence les limites d’une telle méthode, avec un surapprentissage à partir de 10 000 simulations se traduisant par une augmentation du RMSE à 12,6 puis 13,7 µg.h/L. Puis, nous avons entraîné un modèle de classification XGBoost sur des diagnostics de rejets humoraux et cellulaires du greffon posés par un groupe d’experts, comme alternative à l’actuelle classification de Banff qui est peu reproductible et ne prend en compte que des données histologiques : des AUC ROC de 0,91 à 0,97 ont été obtenues sur des jeux de données indépendants. Enfin, nous avons validé un score de risque de perte du greffon à long terme, construit à l’aide d’une forêt aléatoire de survie, et utilisant uniquement quelques variables disponibles au premier anniversaire de la transplantation. Le score atteint une AUC ROC 0,76 et 0,73 à 5 et 10 ans post-transplantation. L’ensemble de ces travaux a donc permis de montrer quelques avantages et limites du Machine Learning pour améliorer la prise en charge médicale des patients transplantés rénaux, comme alternative ou complément des approches statistiques acceptées de plus longue date.;

Année : 2023;

Détails


Type(s) de ressource(s) :

Indexation :

Spécialité(s) : ***thérapeutique
***chirurgie
***transplantation
***informatique médicale
***sciences de l'information
***mathématiques

Vous pouvez consulter :


Nous contacter.
09/05/2025


[Accueil] [Haut de page]

© CHU de Rouen. Toute utilisation partielle ou totale de ce document doit mentionner la source.