" /> Brønsted relation - CISMeF





Preferred Label : Brønsted relation;

Detailed label : Brønsted relation;

IUPAC definition : The term applies to either of the equations: \[\frac{k_{{HA}}}{p} G\left ( \frac{q\ K_{{HA}}}{p} \right ) {\alpha}\] \[\frac{k_{{A}}}{q} G\left ( \frac{q\ K_{{HA}}}{p} \right ) {-\beta} \] (or their logarithmic forms) where α, β and G are constants for a given reaction series (α and β are called 'Brønsted exponents'), kHA and kA are catalytic coefficients (or rate coefficients) of reactions whose rates depend on the concentrations of HA and/or of A sup /sup . KHA is the acid dissociation constant of the acid HA, p is the number of equivalent acidic protons in the acid HA, and q is the number of equivalent basic sites in its conjugate base A sup class minus /sup . The chosen values of p and q should always be specified. (The charge designations of H and A are only illustrative.) The Brønsted relation is often termed the 'Brønsted catalysis law' (or the 'Catalysis law'). Although justifiable on historical grounds, this name is not recommended, since Brønsted relations are known to apply to many uncatalysed and pseudo-catalysed reactions (such as simple proton (hydron) transfer reactions). The term 'pseudo-Brønsted relation' is sometimes used for reactions which involve nucleophilic catalysis instead of acid–base catalysis. Various types of Brønsted parameters have been proposed such as βlg, βnuc, βeq for leaving group, nucleophile and equilibrium constants, respectively.;

Details


You can consult :

The term applies to either of the equations: \[\frac{k_{{HA}}}{p} G\left ( \frac{q\ K_{{HA}}}{p} \right ) {\alpha}\] \[\frac{k_{{A}}}{q} G\left ( \frac{q\ K_{{HA}}}{p} \right ) {-\beta} \] (or their logarithmic forms) where α, β and G are constants for a given reaction series (α and β are called 'Brønsted exponents'), kHA and kA are catalytic coefficients (or rate coefficients) of reactions whose rates depend on the concentrations of HA and/or of A sup /sup . KHA is the acid dissociation constant of the acid HA, p is the number of equivalent acidic protons in the acid HA, and q is the number of equivalent basic sites in its conjugate base A sup class minus /sup . The chosen values of p and q should always be specified. (The charge designations of H and A are only illustrative.) The Brønsted relation is often termed the 'Brønsted catalysis law' (or the 'Catalysis law'). Although justifiable on historical grounds, this name is not recommended, since Brønsted relations are known to apply to many uncatalysed and pseudo-catalysed reactions (such as simple proton (hydron) transfer reactions). The term 'pseudo-Brønsted relation' is sometimes used for reactions which involve nucleophilic catalysis instead of acid–base catalysis. Various types of Brønsted parameters have been proposed such as βlg, βnuc, βeq for leaving group, nucleophile and equilibrium constants, respectively.

Nous contacter.
13/05/2024


[Home] [Top]

© Rouen University Hospital. Any partial or total use of this material must mention the source.