" /> Marcus–Hush relationship - CISMeF





Preferred Label : Marcus–Hush relationship;

IUPAC definition : Relationship between the barrier (ΔG‡) to thermal electron transfer, the energy of a corresponding optical charge-transfer (CT) transition (Δ E op), and the overall change in standard Gibbs energy accompanying thermal electron transfer (Δ G o). Assuming a quadratic relation between the energy of the system and its distortions from equilibrium (harmonic oscillator model) the expression obtained is: \[Δ G {\ddagger} \frac{Δ E_{{op}} {2}}{4\ (Δ E_{{op}}\,-\,Δ G {o})}\] The simplest form of this expression obtains for degenerate electron transfer (Δ G o) in e.g. symmetrical mixed valence systems: \[Δ G {\ddagger} \frac{Δ E_{{op}}}{4}\] Note that for this situation the Marcus equation reads: \[Δ G {\ddagger} \frac{\lambda }{4}\];

Détails


Vous pouvez consulter :

Relationship between the barrier (ΔG‡) to thermal electron transfer, the energy of a corresponding optical charge-transfer (CT) transition (Δ E op), and the overall change in standard Gibbs energy accompanying thermal electron transfer (Δ G o). Assuming a quadratic relation between the energy of the system and its distortions from equilibrium (harmonic oscillator model) the expression obtained is: \[Δ G {\ddagger} \frac{Δ E_{{op}} {2}}{4\ (Δ E_{{op}}\,-\,Δ G {o})}\] The simplest form of this expression obtains for degenerate electron transfer (Δ G o) in e.g. symmetrical mixed valence systems: \[Δ G {\ddagger} \frac{Δ E_{{op}}}{4}\] Note that for this situation the Marcus equation reads: \[Δ G {\ddagger} \frac{\lambda }{4}\]

Nous contacter.
28/07/2025


[Accueil] [Haut de page]

© CHU de Rouen. Toute utilisation partielle ou totale de ce document doit mentionner la source.