NoSQL technology in order to Support Semantic Health Search Engine

Romain LELONG^{a,b}, Lina F. SOUALMIA^{a,b,c}, Saoussen SAKJI^d, Badisse DAHAMNA^a, Stéfan DARMONI^{a,b,c} ^a Department of Biomedical Informatics, Rouen University Hospital, France ^b TIBS - LITIS EA 4108, University of Rouen, France ^c French National Institute for Health, INSERM, LIMICS UMR-U1142, Paris, France ^d University of Jendouba, Tunisia

Introduction : Not Only SQL (NoSQL) databases have emerged to meet the needs of managing the increasing volume of available (e.g. Electronic Health Records fields [2]) but remain immature and lack of standards [3] which make them difficult to use in Information Retrieval (IR) context. LiSSa provides a French access to 1,191,977 health bibliographic references [1]. This study, presents the implementation of the LiSSa's back-end underlying semantic search engine (SSENoSQL) using Infinispan Technologie.

Method : Infinispan is one of the best open-source In Memory Data Grid (IMDG)

Table 1. Maps-based Data model. " $\langle X \rangle$ " designate a list of elements of type X. All the data is modeled as entities associated to attributes or to other entities through a relationship triplet (id_s , lable, id_t).

as regards to data access performance [4]. The data are modeled as RAM-stored hash tables structures (viz. Maps). The data model of the SSENoSQL (see table 1) has been designed in a generic way by following the Resource Description Framework (RDF) graph model [5].

Map name	key	value		
Map_T (types of entities)	id	type		
Map_E (entities)	id	entity		
Map_A (attributes)	id	<(name, attribute)>		
Map_R (relationships)	id_s	$\langle (id_s, label, id_t) \rangle$		
Map _J (joints)	$id_s + label + type_t$	$\langle id_t \rangle$		
Map_M (model)	type	model		

Result : A comparison between the execution times of 10 queries on both the SSE_{NoSOL} and the older version of the search engine SSE_{SOL} is performed. We can observe averages run times in the range of 3 seconds for the SSE_{NoSOL} against 12.6 seconds for the SSE_{SOL} .
Table 2. Average execution times of 10 queries

query	n	$t_{SQL} (ms)$	$t_{NoSQL} (ms)$	gain (%)	factor
asthma.mc	4,879	440	139	68.4	3.16
humans.mc	448,893	29,538	3,288	88.8	8.98
asthme/diagnosis.mc	1,013	916	315	65.6	2.91
drugs.mt	141,729	14,137	3,213	77.3	4.40
(asthma/drug therapy.mc OU (asthma.mc ET drugs.mt))	387	4,128	2,237	45.8	1.85
drugs.mt ET surgery.mt ET therapeutics.mt	11,042	13,962	2,755	80.3	5.07
drugs.mt OU surgery.mt OU therapeutics.mt	315,619	36,720	4,977	86.5	7.38
iatrogenic disease.sr	57,555	9,305	3,046	67.3	3.05
patient.tc	259,554	9,882	5,310	46.3	1.86
(surgery.tc OU procedure.tc) ET patient.tc	67,155	7,863	5,349	32.0	1.47

Discussion & Conclusion : Due to the small size of the query set and the difference between hardware systems of each version the search engine, another contextual evaluation will be soon conducted based on a more comprehensive set of queries as well as in Clinical IR context. The use of an IMDG enables a sharp improvement of processing times and also reduce variability of run times with a reduction of the standard deviation from 11,267.9 ms to 1,757.6 ms.

References :

[1] Griffon, N et al. A Search Engine to Access PubMed Monolingual Subsets: Proof of Concept and Evaluation in French. J Med Internet Res, December, Volume 16, Number 12, Pages e271, 2014.

[2] Luo, J et al. Big data application in biomedical research and health care: A literature review. Biomedical informatics insights, 2016, vol. 8, p. 1.

Nayak, A et al. Type of NOSQL databases and its comparison with relational databases. International Journal of Applied Information Systems, [3] 2013, vol. 5, no 4, p. 16-19.

[4] Salhi, H et al. Open Source In-Memory Data Grid Systems: Benchmarking Hazelcast and Infinispan. In : Proceedings of the 8th ACM/SPEC on International Conference on Performance Engineering. ACM, 2017. p. 163-164.

[5] WORLD WIDE WEB CONSORTIUM, et al. RDF 1.1 concepts and abstract syntax. 2014.

