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ABSTRACT

In this paper we present keyword and content-based medical
image retrieval approaches. Our primary goal is to measure
the relevance of our automatic medical image indexing process,
which provides us with two signatures: numerical and symbol-
ical. For indexing and retrieval purposes a medical image data-
base, containing six medical modalities (i.e. angiography, ultra-
sonography, magnetic resonance imaging, standard radiography,
computer tomography, and scintigraphy), was created by a med-
ical specialist, from a real healthcare environment. This data-
base was used as a test platform for image feature extraction and
modality classification during the indexing stage, and then for
performance evaluation during the image retrieval stage. The
content-based retrieval showed decent performance, with an av-
erage precision of 51% within the 5, 10 or 20 best matches (i.e.
most similar to the query image, by a given metric). The modal-
ity keyword-based retrieval process yields 88% for both aver-
age precision and recall, when an SVM classifier was used to
automatically determine the symbolic signatures (i.e. modality
class) of medical images. Using the modality information repre-
sented by the symbolical signature, allows better adapted image
retrieval approaches in a large online medical context.

1. INTRODUCTION

The images attached to health-resources are often of cru-
cial importance in deciding wether a resource is relevant
for information retrieval. The CISMeF health-catalogue
(French acronym of Catalogue and Index of On-Line Health
Resources) provides on-line searching capabilities for health-
resources. Adding an image retrieval functionality to the
CISMeF health-catalogue will allow the users (i.e. health
professionals, students or the general public) to perform
better adapted queries depending of what they are search-
ing for.
The CISMeF project [1] was initiated in 1995 in order
to meet the users’ need to find precisely what they are
looking for among the numerous health documents avail-
able online1. CISMeF describes and indexes the most

1http://www.cismef.org

important resources of institutional health information in
French. Indexing is a decisive step for the efficiency of
information retrieval within the CISMeF catalogue, and
it is also one of the most time consuming tasks for the
librarians, demanding high-level documentary skills. In-
deed, the textual content of resources is manually anno-
tated with a metadata set and a structured terminology
similar to a documentary ontology of the medical field [2].
Ongoing work is concerned with automatic text indexing
of medical resources in CISMeF [3].
Being aware of the importance of medical images in health-
care, we currently aim to enrich the health catalogue CIS-
MeF with an image retrieval engine allowing query by
keyword and/or by the visual content. Therefore, the cat-
aloguing of medical images extracted from CISMeF re-
sources requires not only numerical-feature extraction (i.e.
color, form, texture), but also metadata extraction (i.e. im-
aging modality, body region or pathology) to form a bi-
modal: numerical and symbolical signature of the image
visual content.

2. MEDICAL IMAGE RETRIEVAL APPROACHES

Image retrieval has been an extremely active research area
over the last 10 years. There are several excellent review
articles that are presenting the state-of-the-art of general-
purpose CBIR systems like [4][5][6][7][8]. The medical
image retrieval systems are generally based on keyword
queries and manual textual annotations of the medical im-
ages [9], whereas those by visual content are still on a
prototype state, dedicated to a very specific medical con-
text and not always accessible via Internet. This makes
it impossible to validate and integrate them as effective
tools to train or to assist medical students and healthcare
professionals in the diagnosis stage.
Most content-based medical image retrieval systems are
research prototypes, dealing with a certain modality, a bi-
ological system or an anatomical region. Thus, the KMeD
[10] and COBRA [11] systems are treating MRI head im-
ages, and they are relaying on shape, color, size, texture
descriptors and object-based spatial relations extracted from



regions of interest. ASSERT-system deals with lung CT
images [12] by extracting gray-scale, texture and shape
descriptors with a human-in-the-loop possibility. I-Browse
operates on histological slices [13] using both image and
natural language for querying purposes. The system pre-
sented in [14] investigates bone X-rays in ophthalmology
using shape description and the system presented in [15]
describes the retrieval of tumor shapes in mammogram X-
rays. The IRMA project is the only one that proposes a
general structure for semantic medical image analysis [16]
and recently, body-region categorization results have been
presented [17]. However, even that it considers multiple
modalities, the IRMA system was tested only on x-rays.
Given that the principles used by each of these systems
are dependent on the particular conditions of diagnosis
context, including image modality, they are not directly
applicable to other cases.
For this reason we decided to use a bi-modal index that
will contain in addition to the numerical signature, a sym-
bolical one, representing the medical modality informa-
tion. Consequently, knowing the modality will allow us
to adapt specific image retrieval methods for each modal-
ity in a large medical context (i.e. the CISMeF health-
catalogue).
In this paper we present a bimodal image indexing archi-
tecture, and performance evaluations for keyword-based
and content-based image retrieval on a medical image data-
base extracted from the RUH’s (Rouen University Hospi-
tal) daily routine.

3. MEDICAL IMAGE DATABASE

The implementation of medical image indexing and re-
trieval methods requires the constitution of a representa-
tive medical image database.
A list of medical image modalities used in daily practice
was constituted by a medical expert from the RUH, and
implemented in the CISMeF terminology as resource type
[2]. Since the beginning of this study, the CISMeF team
has developed an exhaustive taxonomy of medical image
types (N=65) derived from the MeSH tree2 of diagnosis
imaging.
For the experiments presented in this paper, we consider
only the main categories of medical-image modalities: standard-
angiography, ultra-sonography, magnetic resonance imag-
ing (MRI), standard radiography (X-ray), CT scan (Com-
puter Tomography), and scintigraphy.
The medical images acquired and stored digitally may be
very large in size and number. When assembled in im-
age databases, published or even for clinical use, the com-
pression offers a means to reduce the cost of storage and
increase speed of transmission. JPEG lossy compression

2http://www.nlm.nih.gov/mesh/MBrowser.html

Table 1: Medical Image Database Content
Modality no. of images repartition

angiography 337 25.3%
ultra-sonography 180 13.5%

MRI 371 27.9%
X-ray 126 9.5%

CT scan 293 21.9%
scintigraphy 25 1.9%

Total 1332 100%

used almost exclusively on medical image databases in-
volves deliberately discarding information that is not vi-
sually or diagnostically important. In this paper our meth-
ods are evaluated on a JPEG compressed database, but
they can apply to medical images whatever compression
scheme is being used.
Our medical image database [Tab. 1] contains 1332 im-
ages extracted from Radiology, Radio Pediatry and Nu-
clear Imaging departments of RUH and of the ”Henri Bec-
querel - Fight against Cancer Center of Rouen”. The im-
ages do not have the same dimension and quality, being
acquired with different digital or analogical equipments,
in different hospital services, with different parameters, in
a time-period of several years. Thus, the intra-modality
variability [Fig. 3], which is usually due anatomical and
pathological differences within a modality, is increased.
This makes the extraction and selection of an appropriate
image feature set even more important, in order to im-
prove the robustness of the automatic indexing process in
real-live medical imaging practice.

4. SYSTEM ARCHITECTURE

The medical image retrieval system is based on an auto-
matic indexing stage [Fig. 1]. First, various image fea-
ture extraction, feature selection and classification meth-
ods have been implemented and compared for medical
modality categorization [18]. The best performances have
been achieved with an SVM classifier, on a set of texture
and statistical features. Prior to classification, the features
were selected by considering the consistency within the
class (i.e. the modality).
Second, all the medical images extracted from the CIS-
MeF catalogue have to be indexed with two signatures:
one numerical, representing the selected texture and sta-
tistical features used for modality categorization, to de-
scribe the visual content of the medical images, and one
symbolical (the modality categorization result), to indicate
the medical modality.
As a result of the medical modality indexing stage, our
system allows for image retrieval by modality keyword
(i.e. ”give me all the CT images”) and by content (i.e.
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Figure 1: Overview of the system architecture

”give me the images that are the closest to the query-
image”). The keyword could designate one of the six modal-
ities classes presented in our test-database. The retrieval
result will consist of all the images within the modality
specified in the query. The CISMeF terminology has to
be used to map the natural language queries into the rele-
vant modality keywords. For the content-based image re-
trieval case, similarity measures needed to be computed,
between the numerical signature of the initial query-image
and those from the database. If i and iQ are the fea-
ture vectors of a given image and of the query image,
the similarity between the two is modeled as a distance
function. Assuming that the feature vectors are represent-
ing accurately the images, the distances between the vec-
tors will measure the dissimilarity between the images.
There are series of distance measures developed over the
years (the Mahanalobis distance, the Bhattacharyya dis-
tance, the Kulback-Leibler divergence, quadratic forms,
Chi-square ...) from which we employed the two most
frequently used: L1 (also known as ”Manhattan distance”)
and L2 (aka ”Euclidean distance”), with the following equa-
tions:

dL1(i, iQ) =
n∑

f=1

|i[f ]− iQ[f ]| (1)

dL2(i, iQ) =

√√√√
n∑

f=1

(i[f ]− iQ[f ])2 (2)

where n is the number of features f .
Once all the distances are extracted, we are usually inter-
ested in the first 5, 10 or 20 nearest vectors (i.e. most
similar images to the query-image).
If we are interested in retrieving the most similar images
to a query image, but only from the images of the same
modality, a combination between the retrieval approaches
can be used. Given the similarity between certain images
of different modalities (i.e. MRI and CT scan, or angiog-
raphy and X-ray [Fig. 2]), searching only among the im-
ages of the same modality as the query image would im-
prove the retrieval result.
In the next section, we will present: the extraction and
selection of the image features chosen to represent the nu-
merical signature of our image index, and the modality



a) b)

c) d)

e) f)

g) h)

Figure 2: Confusion between a-c, b-d, e-g and f-h
a,b=MRI; c,d=CT-scan; e,f=X-Ray; g,h=Angiography

categorization process that will provides us with the sym-
bolical signature, representing the modality.

5. AUTOMATIC INDEXING OF MEDICAL
IMAGES

5.1. Image feature extraction

The medical indexing architecture we proposed was im-
plemented in a modality categorization context [18]. Due
to the important variability [Fig. 3] when taking into ac-
count all the medical modalities that could be present into
large on-line medical catalogues like CISMeF, there are
only few relevant image descriptors that could be used for
this purpose. Due to the important variability of anatomi-
cal systems and pathologies presented inside a given modal-
ity, the color and the shape are either non-invariant (i.e.
they do not have invariant characteristics inside a modal-
ity) or irrelevant (i.e. they do not help to differentiate
the modalities) from the modality point-of-view. Conse-
quently, we have chosen the texture measures and the sta-
tistical moments as descriptors for the medical images.
From the large amount of methods developed for describ-
ing texture [19], we used the Harlick’s grey-level co-occur-
rence matrix, the fractal dimension and the Gabor wavelets,
which seemed to outperform the others. In addition we
used features derived from grey-level statistical measures.
This way we obtained a 72 feature vector, that contained

a)

b)

c)

d)

e)

f)

Figure 3: Intra-class variability. a).Angiography;
b).Ultrasonography; c).MRI; d).X-Ray; e).CT Scan;
f).Scintigraphy

16 coocurrence features (co1-co16), 1 fractal dimension
(fd), 48 Gabor features (gb1-gb48) and 7 statistical fea-
tures (mean, median, mode, L2norm, std, skewness, kur-
tosis).

5.2. Region of interest segmentation

To avoid the extraction of these features from regions con-
taining non-invariant or irrelevant information between the
modalities, a region of interest has to be defined defined.
The textual annotations are not always present on med-
ical images, due to legal constraints, but when they are,
the text regions have relatively resembling characteristics
throughout the modalities. Although the background bears
some modality information (i.e. the scintigraphy being
mostly presented on a white background), this informa-



tion is not reliable (i.e. inverted scintigraphy has a black
background). Therefore the text and background regions
should not be included in the region of interest from where
discriminating features are to be extracted.

The textual annotations produced by various medical im-
age systems, were similar enough to be approximated and
extracted with a TopHat filter set on the character’s thick-
ness [Fig.4b]. This process is enhanced by adding some
morphological operations, that consider the horizontal dis-
position of text in lines, allowing to remove the false de-
tections [Fig.4c]. The background was relatively easy to
approximate with the extremities of grey-level histogram
[Fig.4d]) and was extracted by thresholding together with
some conditions of connectivity to the image borders (i.e.
the background regions should have a certain proportion
of pixels on the border, with respect to the region’s size)
[Fig.4e]. Once we obtained the image without the back-
ground and text regions, a rectangular 512x512 analysis
window centered on the barycenter of the region of inter-
est had been extracted [Fig.4f] and, by our experiments,
proved to retain sufficient relevant information for accu-
rate content representation.

a) b)

c) d)

e) f)

Figure 4: Discarding of the text/background information.
a).initial image; b).TopHat filtering; c). removing the text;
d).the image grey-level histogram; the background ap-
proximation is highlighted in grey; e).the text/background
approximation; the errors are corrected with border con-
ditions; f).extraction of the analysis window

5.3. Image feature selection

From all texture and statistical features, the fittest were
selected using various feature selection methods, to cre-
ate a compact and relevant feature set, for a precise and
fast classification. We used several feature selection algo-
rithms based on consistency with the class criteria, PCA
(principal component analysis), SVM scoring (support vec-
tor machines) or entropic-based feature scoring.
The feature selection algorithm that obtained the best per-
formance evaluates (on the full training set) the worth of
each subset of features by the level of consistency in the
class values (i.e. when the training instances are projected
onto the subset of features), then searches the space of
feature subsets by greedy hill-climbing (augmented with
a backtracking facility). By that feature selection algo-
rithm, we reduced the vector size from 72 to 10 features:
4 statistical moments (median, mode, L2norm, kurtosis),
2 cooccurrence (co10, co11), 1 fractal dimension (fd) and
3 Gabor-based features (gb1, gb4, gb25). Furthermore,
the feature selection verifies that the four types of features
that we choose are complementary to each other: from the
initial 72 feature vector, the feature selection method se-
lected 4 out of 7 statistical features, 2/16 co-occurrence
features, the fractal dimension and 3/48 Gabor features.

5.4. The modality categorization

As previously stated, our image index contains a symbol-
ical signature representing the image modality. This ad-
ditional information is important because it will allow us
to use better adapted image retrieval (or processing in a
larger context) approaches for each modality.
The categorization of medical images according to their
corresponding modalities is done by supervised classifica-
tion of the previously selected features, employing a 10-
fold cross-validation scheme. We decided to test the clas-
sifiers generalization abilities with a 10-fold cross-validation
technique to avoid overfitting. Basically cross-validation
means that you use one part of the data (in our case, 9/10)
to build a model, which you then apply to the other part
(for us, 1/10) of the data to assess how well the model fits
the data.
We compared several classifiers (Multi-Layer Perceptron
[20], Random Forest [21], Logistic Model Trees [22], Sup-
port Vector Machines [23], KNN [24]) and the best results
were obtained with an SVM classifier [18]. Several kernel
were compared with different penalty coefficients for mis-
classifications. The best performances were noted with a
second degree polynomial kernel, with C=100.
Once the bimodal index is extracted, the performances of
the two image retrieval approaches considered, by key-
word and by content can be assessed.



6. IMAGE RETRIEVAL PERFORMANCES

In our present architecture, the keyword-based retrieval
permits the extraction of entire modalities using the sym-
bolical signature of the index. Thus, the keyword-based
retrieval performance is directly dependent of the modal-
ity categorization performance.
The results of the modality categorization process, by SVM
classification are given in [Tab. 2]. The confusion matrix
reflects the accuracy obtained in our 1332 images, with
10-fold cross validation scheme.

Table 2: Confusion Matrix
a b c d e f ← classified as

316 1 4 12 2 2 a = angio
0 177 1 0 2 0 b = ultra-sono

13 3 330 2 23 0 c = MRI
13 2 5 105 1 0 d = X-ray
4 3 29 1 253 3 e = CT-scan
2 0 0 1 2 20 f = scinti

We computed intra-class precision and recall to evaluate
image retrieval performances, for the two considered re-
trieval approaches. Precision is the proportion of relevant
retrieved images among all the retrieved images, while re-
call is the proportion of relevant retrieved images among
all relevant images. The first part of the [Tab. 3] summa-
rizes performances of keyword-based retrieval while the
second part shows the performances of content-based re-
trieval within the the 5, 10 and 20 best matches, using the
L1 metrics. The retrieval precisions obtained using L2

metrics for vector similarity estimation were only 1-2%
lower than those obtained with L1 metrics.
The poorest classification results are obtained for scintig-
raphy and X-ray classes [Tab. 3] witch are the most under-
represented in our database [Tab. 1]. The scintigraphy
class has the smallest number of examples, but given the
significant visual difference, with regards to the other modal-
ities, the recognition rates are rather high (above 80%)
[Tab. 3 - Keyword-based Retrieval]. Therefore, few im-
ages are sufficient to learn the scintigraphy class.
Since recall is the proportion of relevant retrieved images
among all relevant images, the evaluations of recall among
the first 5, 10 or 20 most similar images to the query im-
age, is not interesting.
A retrieval example is presented in [Fig.5]. Considering
the two approaches, a knee x-ray content-based retrieval
is formulated, on the x-ray class extracted by modality
keyword-based retrieval. The query was done with the
first image, and the retrieved images are sorted by their
L1 distances to the query image. We observe that among
the first 8 retrieved images all are x-rays, and 5 out of 8
are knee-x-rays.

Table 3: Retrieval
Keyword-based Retrieval

SVM c=100, poly kernel d=2
angio sono MRI X-ray CT scinti

72 feature vector
P= 0.908 0.952 0.894 0.868 0.894 0.8
R= 0.938 0.983 0.889 0.833 0.863 0.8

10 feature vector
P= 0.891 0.917 0.88 0.847 0.879 0.833
R= 0.923 0.983 0.871 0.794 0.843 0.8

Content-based Retrieval
72 feature vector

cut angio sono MRI X-ray CT scinti
5

P= 0.550 0.687 0.558 0.457 0.626 0.152
10
P= 0.581 0.741 0.579 0.437 0.680 0.136
20
P= 0.569 0.735 0.563 0.400 0.695 0.118

10 feature vector
cut angio sono MRI X-ray CT scinti
5

P= 0.429 0.495 0.430 0.250 0.542 0.112
10
P= 0.462 0.521 0.451 0.259 0.589 0.120
20
P= 0.461 0.498 0.433 0.227 0.599 0.092

7. DISCUSSION

We employed only the simplest and well known distance
measures, the objective not being the comparison of their
performances, but to verify the relevance of the extracted
statistical and textural features for medical image retrieval
purposes. The content-based retrieval results obtained in
L1 metrics or in L2 metrics were very similar. In our ex-
periments we obtained better results with query by key-
word retrievals that with query by content, due to very
accurate symbolic signature extraction. Consequently, the
retrieval of entire classes of images by keyword query, is
done with high precisions and recalls, nearly 90% of the
images being placed in the right class. We observe the
similar performances of the two feature vectors: the first
composed from all the extracted 72 features and the sec-
ond composed from the best 10 selected features. The dif-
ferences in precision and recall between the two are very
small, less than 1% being lost by reducing the number of
features, all in significantly decreasing the classification
time. Concerning the content-based retrieval, we obtain
precisions of more than 50% for the most representative
modality classes. The reduced performances of the re-
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Figure 5: Retrieval example

trieval by content approach can be explained by the fact
that the distance computing is not using, unlike SVM, the
relative importance of features. The differences between
the performances of the two considered vectors rises to
approximately 12%, and the difference in computing-time
is far less important for distance-evaluation for than for
SVM training and classifying.

8. CONCLUSION

In this paper presents evaluations of performances for both
keyword and content-based medical image retrieval.

The categorization of the query image, and the optimiza-
tion of the similarity measure, by weighting, will improve
the system performance.

Using a bimodal index, composed from a numerical and a
symbolical signature, allows us to perform better adapted
image indexing procedures, to treat images from different
modalities, anatomical regions or pathologies in a large
online medical context.
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