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In this article, we propose a new approach for indexing
biomedical documents based on a possibilistic network
that carries out partial matching between documents
and biomedical vocabulary. The main contribution of our
approach is to deal with the imprecision and uncertainty
of the indexing task using possibility theory. We
enhance estimation of the similarity between a docu-
ment and a given concept using the two measures of
possibility and necessity. Possibility estimates the
extent to which a document is not similar to the concept.
The second measure can provide confirmation that the
document is similar to the concept. Our contribution
also reduces the limitation of partial matching. Although
the latter allows extracting from the document other
variants of terms than those in dictionaries, it also gen-
erates irrelevant information. Our objective is to filter the
index using the knowledge provided by the Unified
Medical Language System®. Experiments were carried
out on different corpora, showing encouraging results
(the improvement rate is +26.37% in terms of main
average precision when compared with the baseline).
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Introduction

To improve the performance of an information retrieval
system, it is essential to develop an automatic indexing
system that is able to have as output the most representative
index of a document. The latter may be represented by free
or controlled terms. Controlled vocabulary may be a simple
set of terms or a structured set of terms (or concepts) linked
by hierarchical or associative relations (synonymy, broader
than, narrower than, and so on), such as the Medical Subject
Headings® (MeSH) thesaurus (Nelson, Johnson, &
Humphreys, 2001). Using the semantic properties of a
semantic resource (thesaurus, terminology, ontology, and so
on), a relevant term (or concept) may be extracted although
it does not occur in the document. In the case of free term
indexing, keywords are extracted without using any knowl-
edge resource. Thus, the index is not known before and
extracted terms may not conform to the topic to which the
document belongs. Moreover, relevant terms that do not
occur in the document cannot be extracted.

To improve estimation of the similarity between a docu-
ment and a given concept and based on the fact that assign-
ing controlled vocabulary to documents is imprecise
and uncertain, we propose a new approach for indexing
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documents with a thesaurus based on a possibilistic network.
Our approach is labeled Possibilistic Network for Docu-
ments Indexing (PoNeDI). PoNeDI is composed of four
steps: pretreatment, concept extraction, filtering, and final
ranking. We applied our model to the biomedical field. Thus,
we used a biomedical corpus, the MeSH thesaurus, and the
Systematized Nomenclature of Medicine Clinical Terms
(SNOMED CT). To the best of our knowledge, the possibil-
ity theory has not yet been applied to the task of concept
extraction from textual documents. In addition, the possi-
bilistic network (PN) is a powerful method for dealing with
imprecision and uncertainty and has been efficiently applied
in different fields, including information retrieval (IR)
(Boughanem, Brini, & Dubois, 2009). However, the IR
model based on PN does not use a semantic resource; thus,
indexing is not conceptual and the semantic information is
not exploited. In our model, we consider the controlled
indexing process as an IR process. Consequently, terms are
extracted using the PN model proposed by Boughanem et al.
(2009), replacing the query by a controlled term. Thereafter,
a set of concepts is assigned to the extracted terms. The
similarity between a document and a given term is estimated
using the two measures of possibility and necessity. The first
estimates the extent to which a document is not similar to the
term. The second allows confirmation that the document is
similar to the term. To compute these two measures, and
based on the fact that a term is a set of words, two other
measures are also estimated, which are the possibility and
the necessity of a word of a controlled term given a docu-
ment. The first eliminates all the nonrepresentative words for
the document. The second strengthens the importance of the
relevant words. The maximum value of possibility and
necessity of the terms of a concept is assigned to that
concept. Consequently, the document is described through a
conceptual representation.

In addition, extracting terms may be involve exact match-
ing (EM) or a partial matching (PM). EM allows finding in
a document only the controlled vocabulary. Partial (or
approximate) matching allows: (1) finding in the document
other variants of terms that are different from those existing
in dictionaries by applying a stemming or lemmatization
process. Stemming reduces words (in the document and in
the controlled resource) to their stems (or roots) (e.g., reacts,
reacting, reacted, are reduced to react). Lemmatization
reduces words to their base form (e.g., operation and oper-
ated are reduced to operate). PM also allows (2) extraction
of multiword terms that share a subset of their words with
the document. The terms extracted in the two cases may be
relevant, which leads to improvement in recall. These terms
may also be irrelevant, which leads to a decrease in preci-
sion. For example, in case 2, the term “breast cancer” in a
document may yield the MeSH terms “testicular cancer” and
“stomach cancer” because the three terms share the word
“cancer” (Trieschnig et al., 2009). The PN model that we
propose for indexing is based on partial matching and
extracts terms in case 1 and 2. In this article, we focus on
reducing the irrelevant information generated in case 2

through the exploitation of knowledge provided by the
Unified Medical Language System® (UMLS) (Bodenreider,
2004).

The article is organized as follows: the section Related
Work presents the related work. Motivations for the Pro-
posed Work describes the motivations of the proposed
model. Biomedical terminologies defines the biomedical ter-
minologies we used in this study. Possibility Theory is pre-
sented next. This is followed by details of the steps of the
proposed indexing approach. In Experimental Evaluations
and Results, we describe the experiments and the results
generated, which is followed by the Analysis of Results and
Discussion. Finally, in the Conclusion section, we conclude
and present some future work.

Related Work

Several research approaches for indexing documents
have been proposed. We classify them as approaches based
on free indexing and approaches based on controlled index-
ing. Owing to the fact that PoNeDI uses biomedical termi-
nology for indexing, we focus essentially on approaches
based on biomedical controlled vocabulary.

Approaches Based on Free Term Indexing

Bracewell, Ren, and Kuroiwa (2005) used natural lan-
guage processing (NLP) methods for extracting keywords
from a document. The first step of their approach is mor-
phological analysis, which consists of segmenting docu-
ments to words and tagging the segmented documents to
parts of speech. The next steps are extracting noun phrases,
removing stop words, and clustering together the noun
phrases with common noun terms. Finally, the clusters are
ranked using a score based on frequency of terms and noun
phrases. Moreover, keywords extraction can be seen as
supervised learning. Machine learning approaches employ
the keywords extracted from training documents to learn a
model and apply the model to finding keywords from new
documents. This approach includes naive Bayes (Frank,
Paynter, & Witten, 1999), support vector machine (Zhang,
Xu, Tang, & Li, 2006), and conditional random fields
(CRFs) (Chengzhi, 2008; Fkih & Omri, 2012). Keywords
may also be extracted using statistical information. Matsuo
and Ishizuka (2004) considered that two terms are
co-occurrent if they occur in the same phrase. The authors
computed the co-occurrence frequencies of pairs of terms. A
co-occurrence matrix was thus obtained. This method
showed comparable performance to term frequency—inverse
document frequency (TF-IDF) (Salton, Wu, & Yu, 1981).
Bookstein and Swanson (1974) described probabilistic
models that help explain why some words in a document are
relevant for indexing the document whereas others are not.
Newman, Koilada, Lau, and Baldwin (2012) exploited an
unsupervised Bayesian model and applied the method
Dirichlet process segmentation for extracting keyphrases
from a document. Jusoh and Al Fawareh (2011) proposed to
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combine linguistic and statistic methods to extract semantic
keyphrases from documents. In fact, they used possibility
theory to disambiguate the words after a step of a part of
speech tagging.

Approaches Based on Controlled Indexing

Happe, Pouliquen, Burgun, Cuggia, and Le Beux (2003)
computed a statistical weight based on TF-IDF for each term
automatically extracted from the document using a method
based on NLP. These terms were then matched with the
terms of the ADM (Assistance with the Medical Diagnosis)
dictionary. The indexing technique of Aronson, Mork, Gay,
Humphrey, and Rogers (2004) noted by Medical Text
Indexer (MTT) is based on three methods. The first matches
the document terms with UMLS terms using MetaMap (a
software tool for English language that allows mapping of a
document to the concepts included in the UMLS). The
second compares the phrases of the document with the
phrases of the concepts using the trigram method. The third
extracts MeSH terms from the k-nearest neighbors (kNN) of
the document to be indexed and ranks them using a statisti-
cal weight. The indexing method of Névéol (2004) com-
bines a linguistic method and kNN. Couto, Silva, and
Coutinho (2005) computed likelihood between gene ontol-
ogy terms and a document using the evidence content (EC)
of a term, which is the sum of all the EC of its words. The
EC of a word corresponds to its weight in the ontology.
Zhou, Zhang, and Hu (2006) annotated documents with only
the most significant words in the UMLS Metathesaurus®.
Ruch combined, in his approach denoted by EAGL (Ruch,
2006), two models. The first is the vector space model
(VSM) and the second is a regular expression pattern
matcher. De Campos, Ferndndez-Luna, Huete, and Romero
(2007) proposed a Bayesian network (BN)-based model for
indexing documents with a thesaurus. Sohn, Kim, Comeau,
and Wilbur (2008) classified biomedical documents with
MeSH terms using a supervised BN. Only 20 MeSH terms
were used for classification of documents owing to the com-
plexity of the training task. Leung and Kan (1997) proposed
a statistical learning approach for assigning controlled index
terms. Mukherjea et al. (2004) developed a new tool for
indexing biomedical documents called BioAnnotator. This
subsequently used a parser to identify noun phrases from a
document and then matches them to UMLS concepts using
a rule engine. Hliaoutakis, Zervanou, and Petrakis (2009)
proposed the AMTEx (automatic MeSH term extraction)
model. The first step of this model is to apply the C/NC
value method, which allows extraction of composed terms
from the text combining statistic and linguistic information.
The second step is to rank the terms according to the value
of C/NC. Only terms corresponding to MeSH terms are
kept. Jonquet etal. (2011) applied the Mgrep tool for
extracting concepts using 200 biomedical ontologies and
computed a score for each generated annotation according to
its origin (preferred term, nonpreferred term, synonym term,
and so on). Dinh and Tamine (2011) combined VSM

(Singhal, 2001) with a proposed similarity between the
terms and the document that takes word order into account.
The ConceptMapper (Tanenblatt, Coden, & Sominsky,
2010) matches the words of documents to words in diction-
ary entries based on configurable parameters. SpeedRead
(Al Rafou & Skiena, 2013) is a pipeline for extracting
named entities using NLP tools. The first step is tokenization
followed by part-of-speech (POS) tagging, which is an
essential feature to decide the boundaries of the named
entity phrases. Thereafter, a classifier helps to choose the
category to which these named entities belong Prokofyev,
Demartini, and Mauroux (2014) applied POS tagging to
pretreated documents and used the n-gram method to extract
named entities. This approach was tested on 100 documents
from the proceedings of the 2012 SIGIR conference and on
100 documents from high energy physics (hep-ph) from the
arXiv.org preprint repository. The entities extracted from the
two data sets are linked to DBpedia and Wikipedia entities.
BioDI (Chebil, Soualmia, & Darmoni, 2013) reduces the
limitation of partial matching through filtering concepts,
which are extracted using VSM. Takachenko and
Simanovsky (2012) exploited the CRF for a supervised
named entities recognition and tested their approach on
CoNLL2003, OntoNotes version 4, NLPBA 2004, and
DBpedia data sets. MaxMatcher+ (Dinh & Tamine, 2012)
exploits the BM25 weight for ranking the concepts extracted
using MaxMatcher (Zhou et al.,, 2006), which annotates
documents with only the most significant words in the
UMLS Metathesaurus.

Motivations for the Proposed Approach

Our motivations behind (a) exploiting controlled vocabu-
lary, (b) using an unsupervised method (especially PN), and
(c) proposing a method to improve partial matching are:

* The research of Leonard (1977) and Markey (1984) showed
that indexing consistency is increased by 5% when controlled
vocabulary is used instead of simple extraction of keywords,
owing to the reasons cited in the Introduction.

* As described in the related work, most indexing approaches
that use controlled vocabulary are based on an unsupervised
method. This may be explained by the fact that supervised
methods are not suitable for controlled indexing owing to
the complexity of training a system for huge numbers of
classes (approximately 24,000 classes when MeSH thesau-
rus is used). In addition, a supervised method depends on
using a large collection of manually annotated training data.
The work of Dinh and Tamine (2011) is based on the unsu-
pervised method, VSM, which outperformed the well-
known MTI method (Aronson et al., 2004) (0.234% for MTI
vs. 0.273% for the method based on VSM in terms of
average precision). Moreover, De Campos etal. (2007)
showed that the indexing of documents using BN outper-
forms VSM (the average 11-point precision of VSM is 0.17
vs. 0.34). This result highlights the interest of using the
graph model for indexing. Thus, we propose exploiting the
idea of a possibilistic graph.
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Possibility theory has not yet been exploited for dealing with
the controlled indexing task. It showed good results when
used in IR by Boughanem et al. (2009) (0.24% using PN in IR
vs. 0.22% for BM25 [Robertson & Walker, 1994] in terms of
average precision).

Several indexing approaches are based on IR methods to
extract concepts from documents and have achieved good
results (Dinh & Tamine, 2011; Ruch, 2006). These
approaches may be improved, essentially in terms of preci-
sion, by reducing the limitations of partial matching on which
they are based.

All the cited approaches that use controlled vocabulary are
based on EM or PM. These two cases of matching have
limitations, as described in the Introduction. We propose to
reduce these limitations in our approach during the filtering
step.

Biomedical Terminologies

Several biomedical terminologies are used for indexing
biomedical documents. Here, we describe the UMLS, the
MeSH thesaurus, and the SNOMED CT.

The MeSH Thesaurus

The MeSH thesaurus is a controlled vocabulary created
by the U.S. National Library of Medicine (NLM) and is used
for indexing the documents in MEDLINE (which indexes
over 20 million biomedical articles). In its 2014 version,
MeSH contains 27,149 main headings (descriptors) and 83
subheadings. Descriptors are used to describe biomedical
articles and indexing citations. Each descriptor consists of a
set of entry terms. These latter can be nonpreferred terms or
preferred terms (PTs). A nonpreferred term can be narrower
(NT) or broader (BT) than the descriptor or related (RT) to
it. The subheadings define the meanings of the descriptors.
For example “Abortion, induced” is a descriptor and its PT,
NT, BT, RT, and subheading are, respectively “Abortion,
induced,” “Abortion, Rivanol,” “Fertility Control, Post con-
ception,” “Abortion Failure,” and “Adverse effects.”

The SNOMED CT

The SNOMED CT is a multilingual clinical healthcare
terminology. It is created and supported by the College of
American Pathologists, owned, maintained, and distributed
by the International Health Terminology Standards Devel-
opment Organization. The SNOMED CT allows the record-
ing of all disease entities through a set of comprehensive
clinical terms linked with associative and hierarchical rela-
tions. This terminology is used also for the interoperability
of electronic health records across care settings, which are
beneficial for patients. The SNOMED CT covers all fields of
medicine, human dentistry, and veterinary medicine.

The UMLS

The UMLS is a program launched by the NLM that offers
knowledge resources for facilitating access to biomedical

information. The UMLS Semantic Network is one of the
knowledge sources in UMLS and consists of a set of generic
semantic types linked by directed binary semantic relation-
ships. The UMLS concepts, which are included in the
Metathesaurus, are assigned to these semantic types. The
concepts may be potentially connected by the same semantic
relationships that link their semantic types. For example, the
MeSH concepts “imaging, Three-Dimensional” and “coro-
nary artery disease” are linked with the semantic relation
“diagnoses” because their semantic types, respectively,
“Diagnostic Procedure” and “Disease or Syndrome” are
linked with the same relation. The UMLS also contains a
table of co-occurrences between concepts in MEDLINE and
other databases. Each line of the table is a pair of concepts
with its co-occurrence frequency in a database. For example,
the MeSH concept “Endocarditis, Bacterial” co-occurs 100
times with the MeSH concept “Penicillins” in MEDLINE.
In our model, the documents are indexed with the UMLS
concepts that correspond to MeSH descriptors. We also con-
sider that the terms of MeSH and SNOMED CT descriptors
are the terms of their UMLS concepts.

Possibility Theory

Possibiliy theory was introduced by Zadeh (1978) as an
extension of the fuzzy logic theory and developed further by
Dubois and Prade (1988). It allows handling with incom-
plete information and uncertainty in the interval [0, 1]. It
differs from the probability theory.

Possibility Distribution

Possibility distribution 7 is a function from the universe
of discourse X to [0, 1]. The function m(x) evaluates the
possibility that x is the actual value of some variable to
which ris attached. If (x) = 1, then x is totally possible (or
unsurprising). If 7(x) = 0, then x is rejected as impossible. If
an event is not possible, it does not only imply that the
opposite event is possible but also that it is certain. The
normalization condition takes the form max,cx(Tl(x)) = 1.

The Two Measures of Possibility and Necessity

The possibility of an event A, denoted I1(A), evaluates
and reflects the situation in which A is true and relevant and
it is obtained by the formula I'1(A) = maxcam(x). The neces-
sity of an event A, denoted by N(A), evaluates and reflects
the situation in which A is false and is defined by the formula
N(A) = mingea(l — (x)) =1 —-TI(=A).

A Possibilistic Graph

A possibilistic graph is characterized by a qualitative
and a quantitative component. The first is an oriented acyclic
graph consisting of a set of variables V= {A,, A,, . . . A,/ that
correspond to the nodes and of a set of relations that
link the nodes. The second is the conditional possibilistic

4 JOURNAL OF THE ASSOCIATION FOR INFORMATION SCIENCE AND TECHNOLOGY—ee 2015

DOI: 10.1002/asi



Corpus
o
o 0
o0
terminology
Concepts extraction
(Step2)
Filtering @
(Step3)
A set of concepts{C,, C,,...,C,}
FIG. 1. The general process of our indexing approach PoNeDI.

distribution that quantified the links between a node and its
parents. These possibility distributions should respect
normalization.

For each variable A;:

— If A; is a root, which means that Parents(A;) = ¢, and the
domain of A; is dom,, then

max, [1(a,) =1, Va, € dom,,
— If A; has parents, which means that Parents(A;) <> ¢, then
max,, (H(ai/eAi )) =1

Va; € dom,,

where:

dom,,: The domain of A,
0,,: The set of possible configurations of the parents of A;.

The Proposed Indexing Approach

Our approach is composed of four steps as shown in
Figure 1:

1. Pretreatment

2. Concept extraction
3. Filtering

4. Final ranking

Step 1: Pretreatment

The pretreatment step consists of five tasks: (1) dividing
the document indexed D; into phrases; (2) removing punc-
tuation; (3) pruning stop words; (4) stemming; and (5) divid-
ing phrases to words. Tasks 2, 3, 4, and 5 are also applied to
each controlled vocabulary. For example: “The binding of

FIG. 2. The possibilistic network graph for term extraction.

acetaldehyde to the active site of ribonuclease: alterations in
catalytic activity and effects of phosphate” is the title of a
document. After pretreatment, this title becomes “bind acet-
aldehydactiv site ribonucleas alter catalytactiv effect phos-
phat.” Stemming was carried out using the Porter Algorithm
(Porter, 1980). This choice is justified by the fact that Porter
can be implemented in different languages,' including
English and French, which allowed us to test our approach
on English and French corpora. During the stemming
process, as mentioned in the Introduction, a short stem can
be confused with an acronym. Thus, as in Chebil et al.
(2013), the stemming process is only applied on words that
the length of their stems is equal or upper than a threshold Ts
equal to 5.

Step 2: Concept Extraction

The concept extraction step begins with the extraction of
terms of concepts. To extract terms, we use a possibilistic
network, which allows computation of the score (Equa-
tion 1) of each term. Candidate terms are those with non-
null score. The corresponding concepts are then assigned to
the terms. The score of a concept is the score of its terms. If
a concept corresponds to more than one term among the
candidate terms, it takes the highest score. The term that
gives its score to the concept is denoted the representative
term (RepT).

T;: is a term of a concept belonging to MeSH and SNOMED
CT.

W, is a word belonging to the document to be indexed or to a
term.

D;: is the document to be indexed.

«: is a relation between two nodes.

A possibilistic network for term extraction. Terms are
extracted using a possibilistic network. The architecture of
the possibilistic indexing model is based essentially on the
possibilistic IR model of Boughanem et al. (2009) with
replacing the query Q by a term 7;. The graphic component
(Figure 2) represents the following nodes: (1) a document D;

'http://snowball.tartarus.org/

JOURNAL OF THE ASSOCIATION FOR INFORMATION SCIENCE AND TECHNOLOGY—ee 2015 5

DOI: 10.1002/asi


http://snowball.tartarus.org/

(a pretreated document); (2) a word W; belonging to the
document D; or to the term T}; and (3) the (in) dependence
relations that exist between the nodes. The domain of a
document is dom(D;) = {d;, —d;}. If the document is similar
to the instantiated term, then D;=d,, if not D;=—d;. The
domain of a word is dom(W)) = {wy, —w;}. If the word
occurs in the document or in the term, then W, = wy. If the
word is absent in the document or in the term, then
Wi = —wy. The domain of a term is dom(T;) = {t;,, —t;}. If T;
is instantiated, then 7; = ¢, if not, then 7; = —t;. We are inter-
ested in the instantiation of the term, so we consider only
T;=t;. Thus, the term is denoted as 7;.

Evaluation of a term. Our proposed model evaluates
the similarity between a document and a given term.
Evaluation is carried out through propagation of the
information given by the term in the network when it is
instantiated. The links are activated by this instantiation
from the term to the document. Two measures are computed.
The first is the possibility of the document being indexed
given a term (Equation 2). The second is the necessity of the
document given a term (Equation 4). As Equations 1-5
show:

~T(d,[1,)+ N (7)) n
(T, nd;)
(4|7, )
=",
(T Ad)
n(a|r, 3)
(d]T;)= )
N(d|T;)=1-T1(d]T;) “)
with:
H(Tj)=max(H(Tj/\c7,~),H(Tj/\d,~)) (@)

According to the graph topology and supposing that the
words are independent, I1(7; A D;) is computed as follows
(Equation 6):

(I(6¢] 1))
©

prod

Wi eW (T)AW (D)

(n(et))xa|

(7,70 = s | (7))

x [1(D;)x  prod

Wi eW (T)/W (D)

6": all possible configurations of the set of parents of T;.

* O: represents a possible configuration of 6. 6 is the instan-
tiation of W; in the configuration 6.

« The instantiation 8] of the word W, in the first configuration
0= {w;, wy}is 8 =w,.

* The possible configurations of the words of the term 7, = {w,

wa} are 6= {{ws, w2}, {—wi, w2}, {wi, w2}, {=w;, —w2}}.

* We consider that Il(d;) = I1(—d;) = 1 owing to the absence of
any information concerning the documents.

* prod: means product.

* a:is a coefficient and its value belongs to ]0, 1]. We consider
that @ = 1 if the words of terms are in the same phrase at least
once, and a < 1 if not (a is experimentally tuned in Experi-
mental Evaluations and Results). In fact, we hypothesize that
words in the same phrase are more likely to cover the same
meaning.

Aggregation of words of terms (computing IT(T;|0"). The
five canonical forms proposed by Turtle (1991) can also be
adopted for the aggregation of words of terms by replacing
the query by the term 7). Thus, the words of terms can be
connected with the Boolean operators (OR, AND, NOT) and
probabilistic sum or one of its variations the weighted sum.
We present the disjunction form (in this case, the words of
terms are connected with OR) in our possibilistic model.

Disjunction. If we consider a term as a disjunctive
Boolean query, then the terms having at least one word in the
document are considered as candidate terms, which corre-
sponds to a partial matching. Thus, for a term 7; having p
words, we have T;={w;vwz2v...vw,}. In our approach,
we use PM between documents and terms, thus we consider
the disjunction form for computing TI((71€¢) in Equation 6.

Possibility distribution. To define the representativeness of
a word in a document, we consider two cases:

1. The greater the frequency of a word in the document, the
higher it is possibly representative of the document.

2. The greater the frequency of a word in the document and
the lower its frequency in the other documents of the
collection, the higher it is necessarily representative of the
document.

According to case 1, II(wid;) is computed as follows
(Equations 7 and 8):

I (wy |d;) = WW,; (7
_ WFPR,
“" max(WFP,)
wy€ed;
3
WFP; =Y FQyu, xC, (8)

y=1

— WW,: The weight of a word W; in the document D;.

— WFPy;: Word frequencies in positions.

— FQyy: Frequency of wy in a document D; in the position y.
— y=1: Title; y = 2: Abstract; y = 3: Paragraph.

— C,: The coefficient of the position y.

For computing WW,,, we use a weight based on the fre-
quency of a word in the document that takes into account the
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TABLE 1. The conditional possibility of a word W, given a document D;:
II(W, A D).

d; —d;
Wk WWki 1'(Pki
=Wy 1 1

position of the word in the document (in the title, in the
abstract, or in the paragraphs). This weight is denoted word
frequencies in positions WFP (Equation 8). We consider
that the keywords are more dissipated in the paragraphs
and mixed with nonrelevant words (compared to the
abstract and title), whereas keywords are more condensed in
the title (compared to abstract and paragraphs). Thus, we
assigned the following coefficients to each position in the
document: position coefficient (y) =8 to the title, y =4 to
the abstract, and y = 2 to the paragraphs. For normalization,
WFP is divided by the maximum value of WFP in a
document.

If WW,; = 0, then the word W; is not representative for the
document. If WW,; =1, then the word W; is relevant for the
document (the measure of possibility is normalized and its
maximum value is 1).

According to case 2, N(wid;) is computed as follows
(Equations 9 and 10):

N (w, |di) =@y )
log— (10)
T
;= XWW,; = IDF, X WW,;
P log(N) ¢ : ¢

N: the number of documents in the collection.
ni: the number of documents where the word wy occurs.

Having H(ﬁd,) =1, thus, H(Wk|—|d,) = H(Wk A —|d,)
=1- N(W]Jd,) =1- Qi and l_[(—|wk A —|d,) =1

Table 1 summarizes the conditional possibility of a word
Wi given a document D;: ITI(W, A D;)

Estimating the Absence of a Term Word in the
Document T1(6})

As in Boughanem et al. (2009) and with replacing the query
by a term belonging to the MeSH or to the SNOMED CT,
we consider that if a discriminate word of a term is absent
from a document, it decreases the relevance of the term. To
estimate whether or not a word is discriminate, we use the
inverse frequency of the word in the collection. Thus (Equa-
tion 11):

Ywi gw(d) TI(6[)=1 if o] =w,

(11)
=1-IDF, else

N
log—
T

log(N)

With IDF, =

The score of a concept. The score of a concept is the
maximum score of its terms (Equation 12). The term having
the maximum score is the RepT.

Score(Cy) = max(S(T;)) (12)

T;eT(Cy)

T(C): the set of terms of a concept MeSH C;.

We consider that the possibility and necessity of a RepT
are also the possibility and necessity of its concept.

Step 3: Filtering

The aim of this step is to keep only the relevant concepts
among those with their RepTs having a subset of their words
not occurring in the document. In fact, we classified the
nonextraction of these relevant concepts as a category of
indexing errors in a previous work (Chebil, Soualmia,
Dahamna, & Darmoni, 2012). As in Chebil et al. (2013), this
step consists in dividing the set of concepts generated in the
previous step into two sets of concepts: The first set and the
second set are denoted principal index (PI) and secondary
index (SI), respectively. The PI contains the concepts that
their RepTs having all theirs words in the document. These
concepts are denoted principal concepts (PC). The SI con-
tains the concepts that their RepTs having a subset of their
words not occurring in the document. These concepts are
denoted secondary concepts (SC). We separate the PC and
the SC because we are based on the assumption that terms
having all their words in the document are more likely to be
correct. Then, the relevant concepts in the SI are added to the
PI. To perform this task, the concepts in the PI are ranked
using the score (12). Thus, PI={PC, ... PC....PC,)}, PC.
is a PC having the rank e and v is the number of PCs in the
PI. Then, we propose to compute a score s for each SC
(Equation 12). S is based on the co-occurrences of MeSH
concepts in MEDLINE and on the semantic relations
between the concepts. In fact, our assumption is that a SC is
more likely to be correct if it is more co-occurrent and has
more semantic relations with exactly the L first PC in the P/
that are considered the most relevant. L is the length of a
window that contains the L first PCs. For example, accord-
ing to the proposed score (13), if we fix L = /, that means
S(SC) is equal to the sum of the number of co-occurrences
and relations between the SC and the PC having the rank
1(PC;). If L =2, that means S(SC) is equal to the sum of the
number of co-occurrences and semantic relations between
the SC and the two PCs having the rank 1 and 2 (PC; and
PC;). If a SC does not co-occur or does not have any seman-
tic relation with one of the L PCs, or its score S is lower than
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TABLE 2. Statistics about the corpora used in tests.

OHSUMED CISMeF
Total number of documents 120,000 50,000
Average number of words in titles 11.2 10.5
Average number of words in abstract 132.3 100.4
Number of documents for lay people — 22,000
Number of teaching materials — 13,000
Number of clinical guidelines — 15,000

a fixed threshold Th, it is not added to the PI, which is
different from the filtering method in our previous work
(Chebil et al., 2013). In fact, the filtering method in Chebil
et al. (2013) allows the addition of a SC that co-occurs or has
semantic relations, but not both (Equation 13).

L L
S(SC)=Y CF(SC,PC)+ Y NR(SC,PC;) (13)

i=1 i=1

CF: Co-occurrence frequency; NR: Number of semantic
relations.

Step 4: Final Ranking

The SC selected in the previous step is added to the PI;
the final index (F1I) is thus constructed. The concepts of FI
are ranked using the score (12).

Experimental Evaluations and Results
Corpora Used for the Evaluation

To test our approach, we used a subset of the
OHSUMED collection® selected randomly and composed
of 120,000 MEDLINE citations. Each selected citation is
composed of title and abstract. The content of the title was
merged with the content of the abstract when indexing the
citations. A citation is composed of six fields: title (.T),
abstract (W), indexed concepts (.M), author (.A), source
(.S), and publication (.P). We also used another corpus,
which was composed of titles and abstracts of 50,000
resources selected randomly from the resources of
CISMeF (Catalog and Index of Medical sites in French)
(Douyere etal., 2004). Three types of documents are
indexed in CISMeF: documents for lay people, clinical
guidelines, and teaching material. Some statistics about the
collection are given in Table 2 and Figure 3. In order to
have better results and when applying PoNeDI on CISMeF
corpus, we made a table of co-occurrence of concepts in
the CISMeF corpus to carry out step 3 (the filtering step).

*http://trec.nist.gov/data/t9_filtering.html

Documents
for lay
material people
30% 25%

Teaching

Clinical
guidelines
45%

FIG. 3. Statistics about the CISMeF corpus.

In all the experiments, we kept only the first 15 concepts
in the FI. In fact, the average number of concepts in the
manual indexes in OSHUMED is 15 (Ruch, 2006).

Evaluation Measures

To evaluate the indexing approach, we used the mean
average precision (MAP), precision, and F-score, which
combines the precision and recall with an equal weight
(Manning & Schiitze, 1999). Moreover, we computed
the AMAP to determinate the added value of our
contributions.

In addition, to highlight the statistically significant
improvements, we computed the paired-sample 7-tests
between means of each ranking obtained by each experi-
mented method and the baseline. We consider that the dif-
ference between two given rankings is significant if p < 0.05
(noted*), very significant if p<0.01 (noted**), and
extremely significant if p < 0.001 (noted***).

Description of the Experiments

The experiments conducted in the implementation and
evaluation stages can be classified as two categories of
experiments. The first aims to tune the parameters and
coefficient in order to maximize the performance of the
proposed approach. The second category aims to highlight
the added value of each contribution of PoNeDI. The sets
of experiments belonging to the first category are (1)
tuning the coefficient a (in Equation 6), which allows to
give less. The set of experiments belonging to the first cat-
egory are (1) tuning the coefficient L in the step of filter-
ing. The set of experiments belonging to the second
category are (1) comparing the performance of the new
weight ww/idf with the classical weights, (2) testing the
performance of PoNeDI with and without filtering, and (3)
comparing the performance of PoNeDI to the performance
of some existing approaches.

8 JOURNAL OF THE ASSOCIATION FOR INFORMATION SCIENCE AND TECHNOLOGY—ee 2015

DOI: 10.1002/asi


http://trec.nist.gov/data/t9_filtering.html

TABLE 3. The final index of the citation d; having the PMID = 3655403
and generated using PoNeDI.

(CUI; Cf) ((II(d,\Cf); N(d,ICY))
(C0030842; Penicillines) (1; 0.55)
(C0011805; Dextranase) (1; 0; 44)
(C0061622; Glycocalyx) (1; 0.38)
(C0014121; Endocarditis, bacterial) (the SC) (0.33; 0)
(C0014118; Endocarditis) (0.33; 0)
(C0003062; Animals) (0.30; 0)
(C0053749; Viridans, Streptococci) (0.29; 0)
(C0067086; Polysaccharides) (0.29; 0)
(C0318157; organisation and administration) (0.21; 0)
(C0032594; Myxococcus Xanthus Antibiotic) (0.15; 0)
(C0965970; Et protocol) (0.15; 0)
(C0053749; bisphenol a-glycidyl methacrylate) (0.15; 0)
(C0035820; Role) (0.15; 0)
(C0017963; Glycoprotein hormones, alpha (0.15; 0)
subunit)
(C0018801; Heart Failure) (0.08; 0)

The gold standard is the manual indexing of the full
document (not only the title and abstract). For the two
corpora of test, the matching between the generated indexes
and the gold standard is exact. For example, if the concept
«Viridans, Streptococci» exists in the manual index and the
concept « Viridans » exists in the automatic index and does
not occur in the manual one, « Viridans » is not considered
for indexing. Moreover, two indexing rules are applied by
the indexers of CISMeF: (1) If a concept is the ancestor of
another concept (e.g., «Endocarditis» and «Endocarditis,
bacterial») and these latters occur in the same document, the
first concept is not considered for indexing; and (2) if a
concept is a subset of another concept and these latters occur
in the same document, only the longest one is considered for
indexing. Rules 1 and 2 are not the cases of the manual
indexing of OSHUMED. In fact, if a concept is the ancestor
or a subset of another, the two concepts will be considered
for indexing. In order to be sure that the automatic indexing
is performed in the same way as the manual one, the algo-
rithm of PoNeDI follows the same indexing rules of each
corpus.

Example of Indexing Citation

The citation below having the PMID (PubMed® identi-
fier) 3655403* and belonging to OSHUMED (denoted d)
was indexed using PoNeDI at L = 3 (Table 3).

*The main search engine allowing the access to MEDLINE.
*http://www.ncbi.nlm.nih.gov/pubmed/3655403

Title: Enzymatic modification of glycocalyx in the
treatment of experimental endocarditis due to viridans
streptococci.

Abstract: The presence of abundant surface polysaccha-
ride, or glycocalyx, on viridans streptococci has been
associated with failure to eradicate the organism from
experimental cardiac vegetations during penicillin treat-
ment. The role of glycocalyx in retarding sterilization
was tested by in vivo administration of dextranase, an
endohydrolase that attacks internally situated alpha (1-6)
linkages. Dextranase and penicillin, either singly or in
combination, were used to treat experimental endocardi-
tis. After two days of therapy, 100% of animals treated
with penicillin or dextranase alone had infected vegeta-
tions, whereas only 25% treated with penicillin and dex-
tranase had infected vegetations (P less than .01). After
five days of therapy, 100% of the animals treated with
penicillin had infected vegetations, versus none that were
treated with penicillin and dextranase (P less than .01).
We conclude that glycocalyx acts to retard antibiotic
activity in vegetations and that partial enzymatic diges-
tion of the glycocalyx facilitates penicillin sterilization of
the infected valve.

The index of the citation is composed of a set of concepts
(CUP; Cf). The manual index of the same citation is as
follows:

Manual Index: (C0003062; Animals); (CO011805; Dextranase);
(C0014121; Encaditis, Bacterial); (C0017968; Glycoproteins);
(C0026020; Microscopy, Electron, Scanning); (C0030827;
penicillin G); (C0033218; Procaine); (C0032594; Polysaccha-
rides); (C0032595; Polysaccharides, Bacterial); (C0034493;
Rabbits); (C0038395; Streptococcal Infection); (C0038402;
Streptococcus); (C0038412; Streptococcus Sanguis).

Results

Tuning the coefficient a. During this experiment, we tuned
the value of a when the words of a term were not in the same
phrase (Table 4). The different values of a tested were 1; 0.9;
0.8; 0.7; 0.6; 0.5; 0.4; 0.3; 0.2; and 0.1. For each of these
values, we computed the MAP and the F-score using the two
corpora OSHUMED and CISMeF. To carry out this experi-
ment, we fixed an approximate value of L, which was 3. This
value (the value of L) was tuned in the next experiment. In
this experiment, the value of the threshold 7% was fixed at its
minimum value, which was 2.

Evaluation of the filtering step. To evaluate the filtering
step, we generated the results (MAP and F-score) of PoNeDI
for different values of L (Table 5). For each value of L, we
computed the MAP and the F-score using the two corpora
OSHUMED and CISMeF. The baseline considered in this

>CUI = Concept Unique Identifier.
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TABLE 4. Tuning the coefficient a.

1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1
MAP MAP MAP MAP MAP MAP MAP MAP MAP MAP
F-score F-score F-score F-score F-score F-score F-score F-score F-score F-score
OSHUMED 0.547 0.552 0.563 0.571 0.575 0.567 0.559 0.552 0.541 0.540
0.660 0.663 0.671 0.689 0.693 0.685 0.674 0.666 0.657 0.648
CISMeF 0.544 0.551 0.561 0.569 0.573 0.561 0.551 0.556 0.547 0.537
0.657 0.664 0.672 0.681 0.689 0.677 0.664 0.652 0.638 0.625
TABLE 5.  Evaluation of the filtering step. necessity, we conducted three experiments. These experi-

OSHUMED corpus  CISMeF corpus

PoNeDI without MAP 0.462 0.452
filtering F-score 0.596 0.593
(baseline) P@3 0.791 0.794

P@10 0.652 0.652
P@15 0.390 0.401

PoNeDIl at L=1 MAP (A%) 0.489 (+1.14) 0.458 (+1.32)
F-score (A%) 0.597 (+0.16) 0.598 (+0.84)
P@3 (A%) 0.798 (+0.88) 0.797 (+0.37)
P@10 (A%)  0.673 (+0.14) 0.676 (+0.14)
P@15 (A%)  0.497 (+1.22) 0.498 (+1.21)

PoNeDIl atL=2 MAP (A%) 0.493 (+2.28) 0.492 (+8.84)
F-score (A%) 0.616 (+3.35) 0.612 (+0.32)
P@3 (A%) 0.841 (+6.32) 0.849 (+6.92)
P@10 (A%)  0.752 (+11.90) 0.753 (+11.85)
P@15 (A%)  0.505 (+2.85) 0.511 (+3.86)

PoNeDIatL=3 MAP (A%)  0.575 (+24.45)* 0.573 (+25.10)*
F-score (A%) 0.693 (+16.26) 0.689 (+16.18)
P@3 (A%) 0.936 (+18.33) 0.9310 (+17.25)
P@10 (A%)  0.815 (+12.27)* 0.808 (+19.70)*
P@15 (A%)  0.579 (+17.92)* 0.570 (+15.85)*

PoNeDlatL=4 MAP (A%)  0.527 (+9.33) 0.523 (+8.05)
F-score (A%) 0.648 (+8.72) 0.643 (+8.43)
P@3 (A%) 0.865 (+9.35) 0.862 (+8.56)
P@10 (A%)  0.741 (+10.26) 0.740 (+9.62)
P@15 (A%)  0.533 (+8.55) 0.531 (+8.14)

PoNeDIatL=5 MAP (A%)  0.518 (+7.46) 0.509 (+5.16)
F-score (A%) 0.619 (+3.85) 0.614 (+3.54)
P@3 (A%) 0.833 (+8.22) 0.831 (+7.89)
P@10 (A%)  0.702 (+7.25) 0.704 (+7.32)
P@15 (A%)  0.509 (+8.12) 0.499 (+7.11)

PoNeDIl atL=6 MAP (A%) 0.497 (+1.54) 0.492 (+1.95)
F-score (A%) 0.599 (+3.85) 0.595 (+0.03)
P@3 (A%) 0.801 (+1.26) 0.804 (+12.59)
P@10 (A%)  0.682 (+1.48) 0.680 (+0.07)
P@15 (A%) 0.498 (+1.42) 0.493 (+0.02)

Note. *A significant change at p < 0.05.

experiment was our PoNeDI approach without the filtering
step. We carried out this experiment at a =0.6 (PoNeDI
generated the best results at a = 0.6 in the previous experi-
ment). Th was fixed at 2.

Comparison Between Using ww/idf and Some Existing
Weights for Computing the Two Measures of Possibility
and Necessity

To focus on the added value of using the proposed weight
ww/idf for computing the two measures of possibility and

ments are testing PoNeDI using ww/idf, tf/idf, and then
1f/BM-s on both test collections. The results are detailed in
Table 6.

Comparison against other approaches. To highlight the
effectiveness of our indexing approach, we compared the
performance of PoNeDI (final results) with the performance
of other approaches (Table 7). We computed, for each
approach, the MAP, F-score, and precision at ranks 5, 10,
and 15. We considered that MaxMatcher+ was the baseline
against which the other approaches were compared. The
choice of MaxMatcher+ as a baseline is based on the fact
that it is among the most recent tools developed for extract-
ing concepts from biomedical documents. Table 8 and
Figure 4 put the stress on the total number of extracted
concepts, the number of the extracted relevant concepts, and
the number of extracted concepts having at least one word in
the document for each approach compared to the gold
standard.

Analysis of Results and Discussion

The results of the IR model based on a possibilistic
network (Boughanem et al., 2009) showed the effectiveness
of this model, compared to the baseline (the BM25 model).
In fact, the use of the two measures of possibility and neces-
sity to estimate the relevance between a query and a docu-
ment allows ranking relevant documents at the top of the
retrieved documents. Similar to this model, we expected,
when applying the possibilistic network to indexing docu-
ments, that relevant concepts will be at the first ranks. More-
over, the IR model, based on the PN, uses the classical
measure of #/idf for computing the possibility and necessity.
In our model, the #f measure is replaced by the weight
ww/idf, which will improve the estimation of the relevance
of concepts.

When dealing with the limitation of the partial match, we
proposed a filtering step. The stemming process is also
added to our model, which is applied only on words with the
length of their stem being greater than 5. Thus, we expected
that more relevant concepts would be extracted by avoiding,
at the same time, the presence of the irrelevant concepts in
the index.

10 JOURNAL OF THE ASSOCIATION FOR INFORMATION SCIENCE AND TECHNOLOGY—ee 2015

DOI: 10.1002/asi



TABLE 6. Comparison between the use of ww/idf and some existing weights for computing the two measures of possibility and necessity.

OHSUMED CISMeF
P@5 P@10 P@15 MAP P@5 P@10 P@I15 MAP
PoNeDI using ww/idf 0.935 0.815 0.579 0.575 0.931 0.808 0.570 0.579
PoNeDlI using #f/idf 0.857 0.755 0.535 0.513 0.853 0.752 0.515 0.517
PoNeDI using #//BM>s 0.873 0.773 0.536 0.525 0.874 0.778 0.531 0.519

TABLE 7.
approaches.

Comparison of the performance of PoNeDI with other

OSHUMED corpus  CISMeF corpus

MaxMatcher+ MAP 0.455 0.459
(baseline) F-score 0.585 0.588
P@5 0.771 0.775
P@10 0.651 0.652
P@15 0.459 0.457
ConceptMapper MAP (A%) 0.454 (-0.02) 0.414 (-9.80)
F-score (A%) 0,559 (—4.44) 0.583 (=1.04)
P@5 (A%) 0.757 (-1.81) 0.606 (-0.85)
P@10 (A%) 0.648 (-.0.04) 0.641 (—1.68)
P@15 (A%) 0.444 (-3.26) 0.440 (-4.13)
AMTEx MAP (A%) 0.393 (-13.62) 0.398 (-13.28)
F-score (A%) 0.502 (-14.18) 0.505 (—14.28)
P@5 (A%) 0.691 (-10.37) 0.693 (-10.58)
P@10 (A%) 0.551 (-15.36) 0.559 (-12.79)
P@15 (A%) 0.407 (-11.32) 0.403 (-11.81)
PoNeDI MAP (A%) 0.575 (+26.37)* 0.573 (+24.83)*
F-score (A%) 0.693 (+18.46) 0.689 (+17.17)
P@5 (A%) 0.965 (+25.16) 0.962 (+24.12)
P@10 (A%) 0.809 (+24.27)* 0.807 (+23.77)*
P@15 (A%) 0.565 (+23.09)* 0.563 (+23.19)*
BioDI MAP (A%) 0.502 (+10.32) 0.503 (+9.58)
F-score (A%) 0.612 (+4.61) 0.613 (+4.25)
P@5 (A%) 0.851 (+10.37) 0.852 (+9.93)
P@10 (A%) 0.747 (+15.27) 0.749 (+14.87)
P@15 (A%) 0.495 (+7.84) 0.499 (+9.19)

Note. *A significant change at p < 0.05.

We present, in the following subsections, the results of
each contribution and we discuss also the comparative
experiments between PoNeDI and some existing indexing
tools.

The Interest of Using Coefficient a (Equation 6)

According to Table 3, the best values of MAP and
F-score are seen when a = 0.6 on both test collections. We
can deduce the effectiveness of giving more importance to
terms with all their words in the same phrase. It is also
clear that some terms without their words in the same
phrase may also be relevant; indeed, extraction of these
terms allows extraction of more multiword terms, which
characterize the biomedical terminologies. Tuning a
allows for the maintaining of a maximum number of these
terms (terms without their words in the same phrase, but
relevant).

The Value of Exploiting the Weight ww/idf for Computing
Possibility and Necessity

As shown in Table 5 and as expected, it is clear that the
maximum performance of PoNeDI is seen when the weight
of a word ww/idf is used on both test collections. In fact, the
MAP and the precision at different ranks of our approach are
higher when the possibility and necessity are computed with
ww/idf than with the classical weights #f/idf and #/BM>s
(MAP =0.575 for ww/idf vs. MAP =0.5132 for f/idf vs.
MAP = 0.525 for ¢//BM>s when the OHSUMED corpus is
used). These results highlight the value of assigning coeffi-
cient to document positions, which contributes to improve
the estimation of the relevance between the concepts and the
documents and to better rank the extracted concepts. More-
over, these results prove that making the difference between
words in the title and words in the abstract is necessary
for evaluating the representativeness of the words in the
document.

The Added Value of the Filtering Step

Table 6 shows, when L is equal to 1 and 2, that there is no
significant reduction of irrelevant information in the FIL. In
fact, there is no notable increase of precision and F-score,
compared to the precision, before expansion of the PI (the
improvement rate). This result is explained by the fact that
the filtering at L=1 and L =2 allows the PI’s expansion
with relevant concepts as well as with irrelevant concepts.
However, it is clear that filtering at L = 3 gives a significant
increase to the performance of PoNeDI (the improvements
rates of MAP, F-score, P@5, P@10, and P@15 are, respec-
tively: +24.45%, +16.26%, +18.33%, +12.27% and
+17.92%. Moreover, only at L =3 is PoNeDI statistically
significant, compared to the baseline (p =0.0231, df =43,
t=2.241, M =0.782).

We can observe, also according to Table 6, that the filter-
ing at a different value of L resulted in a small improvement
after PI’s expansion when the three first concepts are
retrieved. Nonetheless, at ranks 10 and 15, a consistent
improvement of precision can be seen. Obviously, a concept
that no subset of its RT occurs in the document does not have
the best weight. In addition, when L = 6, there is a signifi-
cant decrease in results, compared to L =3 (improvement
rates are 0.49% for MAP and 16.38% for P@10% and
P@15). Indeed, at L > 5, there is less likelihood of finding a
secondary concept that co-occurs and has semantic relations
with exactly the first L principal concepts.

JOURNAL OF THE ASSOCIATION FOR INFORMATION SCIENCE AND TECHNOLOGY—ee 2015 1

DOI: 10.1002/asi



TABLE 8. Details about the extracted concepts for each indexing system compared to the gold standard.

Total no. of EC No. of RC No. of CSTD No. of relevant CSTD @15 No. of irrelevant CSTD @15

PoNeDI OSHUMED 2,269,684 1,478,647 482,000 481,500 NEC
CISMeF 780,569 366,875 108,120 108,070

MaxMatcher+ OSHUMED 2688450 1,209,802 513,145 14,5879 360,000
CISMeF 781,122 356,216 120,256 37,023 80,020

ConceptMapper OSHUMED 1,928,608 1,088,925 NEC NEC NEC
CISMeF 795,486 352,291

AMTEx OSHUMED 2,169,795 1,016,325 NEC NEC NEC
CISMeF 782,005 312,662

BioDI OSHUMED 2,114,281 1,272,879 238,125 376,762 NEC
CISMeF 781,875 361,223 106,012 99,963

Gold standard OSHUMED 2,215,258 837,250
CISMeF 70,700 25,150

Note. EC = extracted concepts; RC = relevant concepts; CSTD = concepts with a subset of their RT terms in the document; CTD = concepts with their

RT terms in the document; NEC = no extracted concepts.

mPercentage of
RC

Percentage of
Relevant CSTD

FIG. 4. Percentage of RC and percentage of relevant CSTD compared to
the gold standard when using the OSHUMED corpus.

The Effectiveness of Using Possibility Networks for
Concepts Extraction and Results Analysis of the
Tested Approaches

When analyzing Table 7, it is clear that only the possibilis-
tic network-based approach outperforms the baseline and all
the other approaches in terms of MAP, F-score, and precision
in different ranks on both test collections. Moreover, we
observe that only in the case of indexing using PoNeDI
(compared to all other approaches) the improvement rate at
p@5 is higher than the improvement rate at p@ 10, and this
latter is also higher than the improvement rate at p@15
(+25.16% for P@5 and +24.27% and +23.09%, respectively,
for p@10 and p@15). In addition, only our approach is
statistically significant, compared to the baseline, among the
tested approaches (p=0.0257, df=23.89, t=2.377,
M =0.775). We observe also that PoNeDI outperformed
BioDI (the improvement rates of BioDI are +10.32%,
+4.61%, +10.37, +15.27%, and +7.84% in terms of MAP,
F-score, P@5, P@10, and P@15 when the OSHUMED
corpus is used) and that BioDI outperformed the remaining
approaches. Consequently, owing to the fact that BioDI and
PoNeDI share the same step of filtering, this observation

proves the effectiveness of the concept extraction step, which
was carried out using the possibilistic network. These results
confirm what was expected. In fact, using the possibility
modeled by the necessity degree contributes to improve the
extraction and ranking of relevant concepts. The recall of
PoNeDI is also higher than the recall of MaxMatcher+ (the
F-score and precision of PoNeDI are higher than the recall
and F-score of the baseline), although that the baseline keeps
all concepts partially matched to the document. This result is
owing to the fact that PoNeDI applies the stemming process,
which is not the case for MaxMatcher+.

The significant results achieved by PoNeDI are explained
by two reasons: The first is the effectiveness of the contri-
butions proposed in PoNeDI; the second is the limitations of
the tested approaches. In fact, MaxMatcher+ is a PM-based
approach; thus, concepts having a subset of their words in
the document may be extracted, which decrease the preci-
sion. Moreover, MaxMatcher+ uses BM25 for ranking con-
cepts, which is less efficient than ww/idf according to the
results detailed in Table 4. The ConceptMapper (having an
improvement rate equal to —0.02%, compared to the base-
line, at P@10 when the OSHUMED corpus is used) is an
EM-based approach, which allows extracting only concepts
in the dictionary entry. In addition, the extracted concepts
are not ranked using a weight that is a major limitation of the
tool. The AMTEx (having an improvement rate equal to
—13.62%, compared to the baseline, in terms of MAP and
using the OSHUMED corpus) extracts also only terms in the
thesaurus and exploits the C-value weight, which applies
linguistic rules that depend on the corpus.

Table 8 showed that the total number of extracted con-
cepts (NEC) using PoNeDI is lower than the NEC using
MaxMatcher+ and higher than the NEC when using Con-
ceptMapper. This result is attributable to filtering. In fact,
PoNeDI, compared to MaxMatcher+, extracted only rel-
evant concepts among those extracted owing to the PM.
Moreover, AMTEx and ConceptMapper extract only con-
cepts having all their words in the document. One can see
also that the number of relevant concepts extracted using

12 JOURNAL OF THE ASSOCIATION FOR INFORMATION SCIENCE AND TECHNOLOGY—ee 2015

DOI: 10.1002/asi



PoNeDl is the highest (Table 8 and Figure 4). In addition, as
shown in Table 8 and Figure 4, the number of relevant con-
cepts extracted by ConceptMapper is higher than Max-
Matcher+, although the precision at rank 5 of MaxMatcher+
is higher. This could be explained by the fact that Concept-
Mapper does not rank the extracted concept, which leads to
lower precision at the first ranks. Table 8 puts the stress also
on the added value of the partial match and the step of
filtering, which characterize PoNeDI.

In fact, 36% and 37% of the gold standard are concepts
having a subset of their words in the document for, respec-
tively, the OHSUMED and CISMeF corpora: approaches
based on PM (PoNeDI and MaxMatcher+) generate these
concepts. Moreover, it can be seen that 54% of relevant
concepts with a subset of their RT terms in the document
(CSTD) are extracted by PoNeDI versus 20% extracted by
MaxMatcher+ and 45% extracted by BioDI in the same rank
15 on both test collecions. MaxMatcher+ retrieves also irrel-
evant CSTD, which is not the case for PoNeDI.

We can deduce, through this analysis, that filtering and
using a possibilistic network in concept extraction contrib-
ute all the more to improve the effectiveness of PoNeDI. In
fact, PoNeDI is statistically significant in the two cases (1)
when filtering at L=3 and (2) compared to the tested
approaches, especially BioDI. We observe also that the per-
formance of our approach depends on the parameters L, a,
which must be well tuned to allow PoNeDI to significantly
outperform the other approaches.

Conclusion

In this article, we proposed a new approach for indexing
biomedical documents based on a possibilistic network. This
approach is composed essentially of four steps: pretreatment,
concept extraction, filtering, and final ranking. Our main
contribution is to use a possibilistic network to extract con-
cepts, which allowed estimation of the similarity between a
document and a given concept, using two measures. We also
propose giving more importance to extracted terms with all
their words in the same phrase. In addition, our contribution
in step 3 is to keep only relevant concepts among those with
a subset of the words of their RTs not occurring in the
document by using the UMLS. The experiments clearly
showed the value of our indexing approach, which can be
improved by adding other steps, such as detecting acronyms.
In a future work, we aim to test the proposed approach by
computing the score (Equation 13) between a SC and all the
possible combinations of the first principal concepts with
different values of Th. In addition, we are working on apply-
ing our approach to the CISMeF and OSHUMED corpora
using biomedical terminologies other than MeSH and
SNOMED CT (Soualmia et al., 2013).
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