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• Introduction aux systèmes d’aide à la décision clinique
• Défis liés à l’intégration de systèmes d’IA/ML en pratique 

clinique
• Facteurs humains associés à l’utilisation de systèmes d’aide à la 

décision

Objectifs



• Clinical decision support system (CDSS)
• Objectifs : fournir aux cliniciens des connaissances et 

informations spécifiques pour améliorer les soins
• Développés depuis les années 1970
• Aide au diagnostic (imagerie, données clinico-biologiques, …)
• Aide à la prise en charge (thérapeutiques, dosages, timing, …)
• Prévention, dépistage
• Systèmes d’alerte

Systèmes d’aide à la décision clinique



• Basés sur la connaissance
• 3 composantes : base de connaissance, moteur d’inférence, interface
• Base de connaissance : recommandations, littérature, experts, …
• Règles de type « si … alors … »
• Exemple : interactions médicamenteuses

Systèmes d’aide à la décision clinique

Sutton RT, Pincock D, Baumgart DC, et al (2020) An overview of clinical decision support systems: 
benefits, risks, and strategies for success. npj Digit Med 3:1–10.

FUNCTIONS AND ADVANTAGES OF CDSS
Patient safety
Strategies to reduce medication errors commonly make use of
CDSS (Table 1). Errors involving drug-drug interactions (DDI) are
cited as common and preventable, with up to 65% of inpatients
being exposed to one or more potentially harmful combina-
tions.17 CPOE systems are now designed with drug safety
software that has safeguards for dosing, duplication of
therapies, and DDI checking.18 The types of alerts generated
by these systems are among the most disseminated kind of
decision support.19 However, studies have found a high level of
variability between how alerts for DDIs are displayed (e.g.,
passive or active/disruptive), which are prioritized,20,21 and in
the algorithms used to identify DDIs.18,22 Systems often have
varying degrees of irrelevant alerts presented, and there is no
standard for how best to implement which alerts to providers.
The US Office of the National Coordinator for Health Information
Technology has developed a list of ‘high-priority’ list of DDIs for
CDS, which has reached various levels of endorsement and

deployment in CDSS’ of other countries including the U.K.,
Belgium, and Korea.20,21,23

Other systems targeting patient safety include electronic drug
dispensing systems (EDDS), and bar-code point-of-care (BPOC)
medication administration systems.24 These are often implemen-
ted together to create a ‘closed loop’, where each step of the
process (prescribing, transcribing, dispensing, administering) is
computerized and occurs within a connected system. At admin-
istration, the medication is automatically identified through radio-
frequency identification (RFID) or barcodes and crosschecked with
patient information and prescriptions. This presents another target
for CDSS and the potential benefit is the prevention of medication
administration errors occurring at the ‘bedside’ (opposed to
further upstream). Adoption is relatively low, partly due to high
technology requirements and costs.25 However; studies show
good efficacy for these systems in reducing errors.26 Mohoney
et al. showed that many of these systems can be combined with
CPOE and CDSS simultaneously, with reduced prescribing error
rates for drug allergy detection, excessive dosing, and incomplete
or unclear ordering.24 As with most CDSS, errors can still be made
if providers omit or deliberately work around the technology.27

CDSS also improve patient safety through reminder systems for
other medical events, and not just those that are medication
related. Among numerous examples, a CDSS for blood glucose
measurement in the ICU was able to decrease the number of
hypoglycemia events.28 This CDSS automatically prompted nurses
to take a glucose measurement according to a local glucose
monitoring protocol, which specified how often measurements
should be done according to specific patient demographics and
previous glucose levels/trends.28

Overall, CDSS targeting patient safety through CPOE and other
systems have generally been successful in reducing prescribing
and dosing errors, contraindications through automated warnings,
drug-event monitoring and more.29 Patient safety can be

N

Kn

on-

ow

-kn

wled

ow

dge 

wled

ba

dge

ased

 ba

d si

ased

ngl

d si

e s

ngl

yst

U

U

le s

em

ser C

ser C

yst

m CD

Choice

Choice

tem

DSS

es 

es 

m CD

S

DSSS

Fig. 1 Diagram of key interactions in knowledge-based and non-knowledge based CDSS. They are composed of (1) base: the rules that are
programmed into the system (knowledge-based), the algorithm used to model the decision (non-knowledge based), as well as the data
available, (2) inference engine: takes the programmed or AI-determined rules, and data structures, and applies them to the patient’s clinical
data to generate an output or action, which is presented to the end user (eg. physician) through the (3) communication mechanism: the
website, application, or EHR frontend interface, with which the end user interacts with the system9.

Box 1. Methods and sources used for this overview

● MEDLINE search 1980-January 2018. Key words: CDSS, diagnostic decision
support system/DDSS, personal health record/PHR decision support, EHR
decision support

● Hand searches of the references of retrieved literature
● University libraries searching for texts on clinical decision support systems

and other keywords mentioned above
● Personal and local experience working with healthcare technology and

decision support systems
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• Sans base de connaissance
• Algorithmes d’IA/ML
• Apprentissage statistique sur expériences passées, pas de 

règles/experts
• En développement depuis émergence de données massives de santé

Systèmes d’aide à la décision clinique

Sutton RT, Pincock D, Baumgart DC, et al (2020) An overview of clinical decision support systems: 
benefits, risks, and strategies for success. npj Digit Med 3:1–10.

FUNCTIONS AND ADVANTAGES OF CDSS
Patient safety
Strategies to reduce medication errors commonly make use of
CDSS (Table 1). Errors involving drug-drug interactions (DDI) are
cited as common and preventable, with up to 65% of inpatients
being exposed to one or more potentially harmful combina-
tions.17 CPOE systems are now designed with drug safety
software that has safeguards for dosing, duplication of
therapies, and DDI checking.18 The types of alerts generated
by these systems are among the most disseminated kind of
decision support.19 However, studies have found a high level of
variability between how alerts for DDIs are displayed (e.g.,
passive or active/disruptive), which are prioritized,20,21 and in
the algorithms used to identify DDIs.18,22 Systems often have
varying degrees of irrelevant alerts presented, and there is no
standard for how best to implement which alerts to providers.
The US Office of the National Coordinator for Health Information
Technology has developed a list of ‘high-priority’ list of DDIs for
CDS, which has reached various levels of endorsement and

deployment in CDSS’ of other countries including the U.K.,
Belgium, and Korea.20,21,23

Other systems targeting patient safety include electronic drug
dispensing systems (EDDS), and bar-code point-of-care (BPOC)
medication administration systems.24 These are often implemen-
ted together to create a ‘closed loop’, where each step of the
process (prescribing, transcribing, dispensing, administering) is
computerized and occurs within a connected system. At admin-
istration, the medication is automatically identified through radio-
frequency identification (RFID) or barcodes and crosschecked with
patient information and prescriptions. This presents another target
for CDSS and the potential benefit is the prevention of medication
administration errors occurring at the ‘bedside’ (opposed to
further upstream). Adoption is relatively low, partly due to high
technology requirements and costs.25 However; studies show
good efficacy for these systems in reducing errors.26 Mohoney
et al. showed that many of these systems can be combined with
CPOE and CDSS simultaneously, with reduced prescribing error
rates for drug allergy detection, excessive dosing, and incomplete
or unclear ordering.24 As with most CDSS, errors can still be made
if providers omit or deliberately work around the technology.27

CDSS also improve patient safety through reminder systems for
other medical events, and not just those that are medication
related. Among numerous examples, a CDSS for blood glucose
measurement in the ICU was able to decrease the number of
hypoglycemia events.28 This CDSS automatically prompted nurses
to take a glucose measurement according to a local glucose
monitoring protocol, which specified how often measurements
should be done according to specific patient demographics and
previous glucose levels/trends.28

Overall, CDSS targeting patient safety through CPOE and other
systems have generally been successful in reducing prescribing
and dosing errors, contraindications through automated warnings,
drug-event monitoring and more.29 Patient safety can be
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Fig. 1 Diagram of key interactions in knowledge-based and non-knowledge based CDSS. They are composed of (1) base: the rules that are
programmed into the system (knowledge-based), the algorithm used to model the decision (non-knowledge based), as well as the data
available, (2) inference engine: takes the programmed or AI-determined rules, and data structures, and applies them to the patient’s clinical
data to generate an output or action, which is presented to the end user (eg. physician) through the (3) communication mechanism: the
website, application, or EHR frontend interface, with which the end user interacts with the system9.

Box 1. Methods and sources used for this overview

● MEDLINE search 1980-January 2018. Key words: CDSS, diagnostic decision
support system/DDSS, personal health record/PHR decision support, EHR
decision support

● Hand searches of the references of retrieved literature
● University libraries searching for texts on clinical decision support systems

and other keywords mentioned above
● Personal and local experience working with healthcare technology and

decision support systems
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• Assister le clinicien au lit du 
malade (et pas le remplacer)

• Interactions SADC – cliniciens
• Aide à la décision médicale : 

obtenir la meilleure stratégie qui 
va bénéficier au mieux au 
patient/à la population, en 
prenant en compte les risques 
potentiels (bénéfices/risques) et 
les coûts

Systèmes d’aide à la décision clinique



• Perturbation de la prise en charge
• Peu précis, fatigue des alertes, évitement
• Evaluation complexe
• Impact sur les performances des utilisateurs ?
• Interopérabilité
• Plus efficace pour données structurées (ex: imagerie)
• Maintenance complexe, déclin des performances
• Explicabilité
• Enjeux éthiques

Limites

Sutton RT, Pincock D, Baumgart DC, et al (2020) An overview of clinical decision support systems: 
benefits, risks, and strategies for success. npj Digit Med 3:1–10.



• Développé sur 405 000 patients
• Score prédictif de sepsis calculé toutes les 15min
• Utilisation dans plus de 100 hôpitaux américains
• Modèle propriétaire, pas de validation externe indépendante
• Evaluation sur 38 455 hospitalisations dont 2552 sepsis (7%)

• AUC 0.63 (95% CI, 0.62-0.64)
• 183 (7%) patients septiques correctement identifiés
• Sepsis alert concernant 6971 (18%) des hospitalisations
• Les cliniciens devaient réévaluer 8 patients pour identifier un sepsis
• Fatigue des alertes

Exemple : Epic Sepsis Model

Wong A, Otles E, Donnelly JP, et al (2021) External Validation of a Widely Implemented Proprietary Sepsis 
Prediction Model in Hospitalized Patients. JAMA Internal Medicine 181:1065–1070. 



Cycle de développement

Pré-développement Développement Post-développement

• Récupération des 
données

• Stockage
• Qualité
• Données manquantes
• Question clinique

• Choix du modèle
• Entrainement
• Evaluation rétrospective

• Industrialisation (échelle)
• Intégration, interface
• Autorisations
• Déploiement
• Evaluation prospective
• Monitoring

• Acceptabilité
• Interprétabilité
• Facteurs humains



• Ergonomie et interface utilisateur
• Interfaçage efficace
• Eviter erreurs d’interprétation

• Formation et compétence des utilisateurs
• Formation spécifique pour chaque SADC
• Impact sur l’efficacité clinique, courbe d’apprentissage

• Facteurs psychologiques et cognitifs
• Impact sur la charge cognitive
• Equilibre entre confiance et scepticisme

Facteurs humains



Facteurs humains

Nagendran M, Festor P, Komorowski M, et al (2023) Quantifying the impact of AI recommendations with
explanations on prescription decision making. npj Digit Med 6:1–7.

well as an explanation based on feature importance. The state
space for the AI Clinician was constructed using a k-means
clustering algorithm. After the algorithm converged, the cluster
centroids represented the average feature values for patients in a
particular state/cluster. A new patient would be assigned to the
state/cluster that minimised the distance from their feature values
to the respective cluster centroid. Intuitively, with over 40 features,
some features will be closer to the cluster centroid value than
others for any patient assigned to a given state. This is exploited to
rank features in terms of their proximity to the cluster centroid (or
average state feature values) given that the archetypal patient for
whom an RL agent policy action most applies is a patient who is
most typical of that state. Subjects were shown the top five ranked
features contributing to state assignment (for details see
Supplementary Methods 3). Although feature importance can be
considered a basic form of XAI, it is nonetheless in widespread use
within medical studies12,19–23.
The trial design matrix (see Supplementary Methods 4) ensured

that half the subjects saw a patient under one arm while the
others encountered the same patient under a different arm,
allowing estimation of between arm variability by controlling for
the patient. Our primary measure of interest was the difference in

prescribed dose to the same patient across the four different arms
—effectively measuring the shift in dose across arms as a measure
of impact that the arm has on clinical decisions (Fig. 5b). The
overall order of trials was varied to counterbalance any learning
effects. Statistical analyses included two-sided T-tests for compar-
ison of means (after confirming normality) and linear regression
for assessing associations. Both were performed with no adjust-
ment for multiple comparisons.

Subject recruitment and experiment conduct
The experiment was created as an interactive web page using
HTML and JavaScript (jsPsych library) that could run locally on a
laptop. Pre-cleaned data from MIMIC-III patients trained on by the
AI Clinician were checked for consistency and then feature values
were converted to standard clinical UK units.
Clinician demographics, experience and affinity to AI were

collected using a questionnaire prior to completion of the main
experiment (Fig. 5a). After the experiment, subjects further
completed a short post-experiment questionnaire (see Supple-
mentary Methods 5). Data collected for each patient scenario
included: clinician’s prescription doses for fluid and vasopressor
per patient scenario as well as time taken per patient scenario.
A convenience sample of ICU doctors was recruited with the

following inclusion criteria: (i) practising doctor, (ii) has worked for
at least 4 months in an adult ICU, (iii) currently works in ICU or has
worked in ICU within the last 6 months. Participants had the
opportunity to participate remotely via Zoom or in person.
Electronically recorded informed consent was obtained from all
participants and each experiment lasted approximately
45minutes. The study was approved by the Research Governance
and Integrity Team (RGIT) at Imperial College London (ICREC
reference 21IC7245). The institutional review board of the
Massachusetts Institute of Technology (no. 0403000206) and Beth
Israel Deaconess Medical Center (2001-P-001699/14) approved the
use of MIMIC-III for research. Because our study made use of fully
anonymised patient data, individual patient consent was not
required.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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Fig. 5 Dose shift and experiment protocol. The experiment
protocol is shown in (a). Dose shift relative to baseline occurring
as a result of showing the AI suggestion is shown in (b). The extra
shift between AI and XAI is the marginal shift attributable to the
explanation. c Shows the AI and XAI components of the decision
screen where participants input their prescription choice.
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arms (baseline 83 seconds (s), peers 83s, AI 79s, XAI 83s, p= 0.574
by Kruskal–Wallis test).

Impact of arms on dosing shift
An example of prescription shift for an individual patient scenario
is shown in Fig. 1a. For the same patients in different arms,
providing subjects with additional information from their respec-
tive arm led to an absolute prescription shift for fluid of 70 mls/hr
(peers, standard deviation (SD) 86 mls/hr), 90 mls/hr (AI, SD
83 mls/hr) and 85 mls/hr (XAI, SD 60 mls/hr) relative to the
baseline arm (p= 0.872 for peers, p= 0.002 for AI, p= 0.007
for XAI, all by independent T-test). For vasopressor, the prescrip-
tion shift was 0.04 mcg/kg/min (peers, SD 0.06 mcg/kg/min),
0.05 mcg/kg/min (AI, SD 0.09 mcg/kg/min) and 0.05 mcg/kg/min
(XAI, SD 0.09mcg/kg/min) relative to the baseline arm (p= 0.201
for peers, p= 0.010 for AI, p= 0.002 for XAI, all by independent
T-test). The aggregate prescription shifts are displayed in Fig. 1c.
The individual patient scenario dosing shift figures for all 24
patients are shown in Supplementary Fig. 1.

Impact of arms on practice variation
Providing doctors with a recommendation (be it peer, AI or XAI)
had a common effect: inter-clinician dose variability was
differentially affected according to whether the recommendation
was higher or lower than what subjects in the baseline arm did,
i.e., when the recommendation was higher than baseline, the
prescriptions of doctors in the peer/AI/XAI arms would be more
variable across doctors; when it was lower than baseline,
prescriptions were less variable across doctors. This can be seen
in Fig. 1b.

Association of clinician factors with adherence to AI
suggestions
Clinician attitude to AI was extracted as a principal component of
the four pre-experiment AI enthusiasm questions subjects were
asked (Fig. 2a). The first component explained 69% of the variance
(Fig. 2b). Attitude to AI did not have a significant linear association
to the difference between subject selected dose and AI
recommended dose for either fluid (r=−0.078, p= 0.075 by LLSR
(linear least-squares regression)) or vasopressor (r=−0.074,
p= 0.092 by LLSR), see Fig. 2c. Similarly, years of clinical
experience did not have a significant association to the difference
between subject selected dose and AI recommended dose for
either fluid (r= 0.001, p= 0.862 by LLSR) or vasopressor
(r=−0.086, p= 0.047 by LLSR), see Fig. 3b, c. Practice variation
and adherence to AI by grade of doctor are shown in
Supplementary Fig. 2.

Clinician opinions on AI and the explanations
Post experiment, subject likelihood of using an AI system for
sepsis prescriptions on a scale from 1 to 5 (higher more likely to
use) was mean 2.55 for training doctors (which encompasses both
junior and intermediate doctors, SD 0.96) versus 2.16 for non-
training doctors (senior/consultants, SD 1.07), p= 0.091 by
independent T-test (Fig. 4a). Subjects were asked to rate the
usefulness of the explanations on a scale from 1 to 5 (higher more
useful) with mean 2.22 for training doctors (SD 1.03) versus 1.97
for non-training doctors (SD 1.11), p= 0.296 by independent T-test
(Fig. 4b). Self-reported usefulness of explanations did not correlate
with adherence to XAI suggestions (Fig. 4d). Subjects were also
asked to rate the usefulness of showing peer and AI suggestions
together on a scale from 1 to 5 (higher more useful) with mean

Fig. 1 Dose shift and variability by intervention arm. a The prescription distributions for a single patient scenario (and, for illustrative
purposes only, mapped onto (b)). For each boxplot, the centre line represents the median, box edges represent upper and lower quartiles,
whiskers represent 1.5× inter-quartile range and diamonds are outliers. Blue dashed line represents the median of the peer distribution data
(only available to those in the ‘Peers’ arm). Red dashed line represents the AI suggested dose (only available to those in the ‘AI’ or ‘XAI’ arms).
2b, change in inter-clinician variability by size of recommendation difference for peers/AI/XAI (i.e. was the recommended dose higher (positive
recommendation gap) or lower (negative recommendation gap) than the baseline average (dashed green line) and how does this affect
variability of clinicians (x- and y-axes scales are arbitrary units, normalised to allow fluid and vasopressor to be plotted together. c Absolute
difference (i.e. 50 ml in either direction treated as +50ml discordance) from dose in the baseline group, aggregated for all 24 patient
scenarios. The error bars are formed by randomly taking 1000 bootstraps of the data (80% subset with replacement) and estimating a
distribution for prescription doses (error bar is distribution mean +/− standard deviation).
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Conclusion

• L’IA est un outil

• Pour répondre à une question clinique pertinente

• Savoir utiliser et comprendre ces outils

• Problématiques de l’utilisation en pratique courante

• Evolution rapide et impact des grands modèles de langage




