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• Connaître les bases des algorithmes d'IA/ML, leur cycle de 
développement et leur évaluation

• Savoir lire et critiquer un article d’IA/ML en santé, 
particulièrement en anesthésie-réanimation

Objectifs
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Implementation of AI is generally associated with bar-
riers concerning data management, the development of 
models or the implementation in the (clinical) workflow. 

For instance, well-known barriers on the level of data and 
model development are: privacy/data sharing, regulation, 
and model generalizability [36–38]. Large amounts of 

Fig. 2 Proportion (%) of studies according to their design and the number of patients analyzed. *Studies with a retrospective design were stratified 
according to their level of validation (e.g. internal, external and no reported validation)

Fig. 3 Number of studies published according to their level of readiness and year of publication. The total number of studies reporting on model 
development and prototyping (level 3 and 4), increased rapidly from 30 studies per year in 2017 to 92 studies per year in 2019. Furthermore, the 
number of studies per year reporting on external validation (level 5) increased from two in 2017 to seven in 2019. The current movement is mainly 
horizontal whereas the desired movement is diagonal, i.e. towards clinical evaluation

van de Sande D et al (2021) Moving from bytes to bedside: a systematic review on the use of artificial
intelligence in the intensive care unit. Intensive Care Med 47:750–760.
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patient data are required to ‘train’ a new AI model. Ide-
ally, ICU data are shared across institutions to construct 
large and diverse datasets. However, when using such 
sensitive information you have to comply with regula-
tions like the General Data Protection and Regulation 
(GDPR) that has been issued by the European Union. 
Herein, the challenge is to balance the privacy and regu-
latory requirements with the desire to collect large and 
diverse datasets. When translating a model to a different 
institution you may encounter technical differences (for 
instance: differences in equipment, frequencies of data 
collection, and EHR systems) variations in local practices 
or variations in patient characteristics and as of a result, 
the model will tend to poorly generalize.

In this review, we have also identified specific barriers 
in the progress of AI in the ICU from model development 
to clinical implementation. First, 80% of the included ret-
rospective studies were overall at high risk of bias. This 
is an indication that many studies may have been of poor 
quality or at least insufficient to serve as a starting point 
for successful maturity. The risk of bias was particu-
larly high in the ‘participants’ PROBAST domain which 
implies that the quality of the used data may be poor. 
Frequently, the analyzed data were extracted directly 
from hospitals’ electronic health record systems without 
proper validation. In general, obtaining high-quality data 
are a known challenge in the development of AI models 

[38]. Especially raw data, collected through continuous 
patient monitoring in the ICU environment, is prone to 
measurement errors [10, 39]. Several methods have been 
proposed to overcome this barrier, for instance using 
moving average models or signal estimators [40, 41]. 
It is not likely that the data will become entirely noise-
free. Nonetheless, it is crucial to keep this in mind when 
developing an AI model.

Second, in most development studies, the size of the 
dataset was too small to exploit the full power of AI tech-
nologies. Deficiencies regarding the ‘analysis’ PROBAST 
domain most commonly related to Sect.  4.1, which 
means that studies did not use a reasonable number of 
patients relative to the number of predictor variables 
included in the AI model (≥ 20 patients with the outcome 
of interest per predictor variable included in the model 
was considered to be reasonable [23]). This is a key issue 
for many uses of AI [42]. It is generally accepted that the 
more data an AI model gets access to, the more it can 
excel at its’ predefined tasks [43]. To overcome this bar-
rier, a solution may be to calculate the required sample 
size following the method proposed by Riley et al. [44].
Third, in 25% of the included studies in our review, it 

was unclear which variables were eventually used by 
the AI model. In addition, researchers in the field of AI 
commonly use terminology that is not familiar to clini-
cians and other researchers. Moreover, AI studies are 

Fig. 4 Percentage risk of bias according to the domain of assessment for all studies with a retrospective study design; assessed using PROBAST [23]
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ABSTRACT

Introduction: Septic patients requiring inten-
sive care unit (ICU) readmission are at high risk
of mortality, but research focusing on the
association of ICU readmission due to sepsis
and mortality is limited. The aim of this study
was to develop and validate a machine learning
(ML) model for predicting in-hospital mortality
in septic patients readmitted to the ICU using
routinely available clinical data.

Methods: The data used in this study were
obtained from the Medical Information Mart
for Intensive Care (MIMIC-IV, v1.0) database,
between 2008 and 2019. The study cohort
included patients with sepsis requiring ICU
readmission. The data were randomly split into
a training (75%) data set and a validation (25%)
data set. Nine popular ML models were devel-
oped to predict mortality in septic patients
readmitted to the ICU. The model with the best
accuracy and area under the curve (A.C.) in the
validation cohort was defined as the optimal
model and was selected for further prediction
studies. The SHAPELY Additive explanations
(SHAP) values and Local Interpretable Model-
Agnostic Explanation (LIME) methods were
used to improve the interpretability of the
optimal model.
Results: A total of 1117 septic patients who had
required ICU readmission during the study
period were enrolled in the study. Of these
participants, 434 (38.9%) were female, and the
median (interquartile range [IQR]) age was 68.6
(58.4–79.2) years. The median (IQR) ICU inter-
val duration was 2.60 (0.64–5.78) days. After
feature selection, 31 of 47 clinical factors were
ultimately chosen for use in model construc-
tion. Of the nine ML models tested, the best
performance was achieved with the random
forest (RF) model, with an A.C. of 0.81, an
accuracy of 85% and a precision of 62% in the
validation cohort. The SHAP summary analysis
revealed that Glasgow Coma Scale score, urine
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• Objectif : développement 
d’un modèle 
d’apprentissage 
automatique prédictif de la 
mortalité en réanimation 
chez les patients septiques 
nécessitant une réadmission 
en réanimation

Key Summary Points

Why carry out this study?

Sepsis is among the major causes of
readmission to the intensive care unit
(ICU), with a considerable negative
impact on critically ill patients readmitted
to ICU.

Early prediction of deterioration could
provide a critical window of time for
clinical interventions that might reduce
severity.

The objective of this investigation was to
develop and validate an explainable
machine-learning (ML) model based on
clinical variables to estimate the in-
hospital mortality in septic patients
requiring ICU readmission.

What was learned from the study?

ML-based algorithms for accurate
prediction of mortality in septic patients
requiring ICU readmission is possible.

Parameters related to organ perfusion
contributed the most to outcome
prediction during ICU readmission in
septic patients.

SHAP values and the LIME method could
help to improve the model’s
interpretation.

DIGITAL FEATURES

This article is published with digital features,
including a graphical abstract, to facilitate
understanding of the article. To view digital
features for this article go to https://doi.org/10.
6084/m9.figshare.20260935.

INTRODUCTION

The transition of patients from the intensive
care unit (ICU) to a hospital ward is one of the
highest-risk transitions of care [1, 2]. About
5–7% of patients admitted to the ICU will be
transferred back to ICU, and the frequency of
ICU readmission appears to have increased over
the last 20 years [3]. ICU readmission is associ-
ated with higher mortality and longer ICU and
hospital lengths of stay [4, 5]. Septis, defined as
life-threatening organ dysfunction caused by a
dysregulated host response to infection, is
among the most important reasons for ICU
readmission [6] and has a considerable negative
impact on critically ill patients [7]. Sepsis can be
caused by virtually any infecting organism and
is usually accompanied by the production of
proinflammatory cytokines with immunosup-
pressive activity, which increase patient mor-
tality and morbidity [8]. Recent epidemiological
evidence suggests that sepsis occurs in more
than 1.7 million persons annually in the USA
alone, with an estimated mortality of 10–40%
[9, 10], and it is increasingly recognized as a
serious, worldwide public health priority [11].
Despite constant updates to the Surviving Sepsis
Campaign (SSC) guidelines between 2004 and
2021 [12–16], the incidence of sepsis-related
deaths remained unacceptably high [9].

Delays in identifying clinical deterioration in
critically ill patients usually result in increased
morbidity and mortality [17] while, conversely,
early prediction of deterioration could provide a
critical window of time for clinical interven-
tions that might reduce severity [18]. Recently,
a considerable body of literature has grown up
around the theme of early detection of clinical
outcomes in sepsis by utilizing advanced tech-
nologies [19–22], such as machine learning
(ML) and artificial intelligence. However, most
studies only included the first qualifying ICU
admission during a single hospitalization, and
excluded multiple qualifying ICU admissions
[20–22]. Therefore, to our knowledge, no study
has yet developed a specific ML model for pre-
dicting in-hospital mortality in septic patients
requiring ICU readmission.

Infect Dis Ther

Liang Y, Zhu C, Tian C, et al (2022) Early prediction of ventilator-associated pneumonia in critical care 
patients: a machine learning model. BMC Pulm Med 22:250. 



Intelligence artificielle
« Ensemble de théories et de techniques mises en œuvre en vue de réaliser des machines 

capables de simuler l'intelligence humaine » (Larousse)

« La construction de programmes informatiques qui s’adonnent à des tâches qui sont, pour 

l’instant, accomplies de façon plus satisfaisante par des êtres humains car elles demandent des 

processus mentaux de haut niveau tels que : l’apprentissage perceptuel, l’organisation de la 

mémoire et le raisonnement critique » (Marvin Lee Minsky)

Machine learning (apprentissage automatique) : champ d'étude de l'intelligence artificielle qui se 

fonde sur des approches mathématiques et statistiques pour donner aux ordinateurs la capacité 

d'« apprendre » à partir de données



D’après Goodfellow et al., Deep learning, MIT Presse 2016

Intelligence artificielle

Machine learning

Representation learning

Deep learning
Réseaux de neurones

Transformers
…



Types de modèle
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Méthodes
• Source de données

• Base MIMIC IV
• Hospitalisations en réanimation au Beth Israel Deaconess Medical

Center (Boston, MA) de 2008 à 2019
• Données des 24 premières heures de la réadmission

• Critères de sélection
• Patients adultes, réadmis en réanimation pour sepsis (critères Sepsis 3)
• Non inclusion des séjours < 24h, ≥ 3ème admission

• Séparation en deux jeux de données
• Entrainement (75%)
• Test/validation (25%)
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ABSTRACT

Introduction: Septic patients requiring inten-
sive care unit (ICU) readmission are at high risk
of mortality, but research focusing on the
association of ICU readmission due to sepsis
and mortality is limited. The aim of this study
was to develop and validate a machine learning
(ML) model for predicting in-hospital mortality
in septic patients readmitted to the ICU using
routinely available clinical data.

Methods: The data used in this study were
obtained from the Medical Information Mart
for Intensive Care (MIMIC-IV, v1.0) database,
between 2008 and 2019. The study cohort
included patients with sepsis requiring ICU
readmission. The data were randomly split into
a training (75%) data set and a validation (25%)
data set. Nine popular ML models were devel-
oped to predict mortality in septic patients
readmitted to the ICU. The model with the best
accuracy and area under the curve (A.C.) in the
validation cohort was defined as the optimal
model and was selected for further prediction
studies. The SHAPELY Additive explanations
(SHAP) values and Local Interpretable Model-
Agnostic Explanation (LIME) methods were
used to improve the interpretability of the
optimal model.
Results: A total of 1117 septic patients who had
required ICU readmission during the study
period were enrolled in the study. Of these
participants, 434 (38.9%) were female, and the
median (interquartile range [IQR]) age was 68.6
(58.4–79.2) years. The median (IQR) ICU inter-
val duration was 2.60 (0.64–5.78) days. After
feature selection, 31 of 47 clinical factors were
ultimately chosen for use in model construc-
tion. Of the nine ML models tested, the best
performance was achieved with the random
forest (RF) model, with an A.C. of 0.81, an
accuracy of 85% and a precision of 62% in the
validation cohort. The SHAP summary analysis
revealed that Glasgow Coma Scale score, urine
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Séparation des données
Toutes les données

Entrainement (training) Test

Entrainement

Prédiction

Evaluation

Evaluation externe



Surapprentissage

Anup Bhande, https://medium.com/greyatom/what-is-underfitting-and-overfitting-in-machine-learning-and-
how-to-deal-with-it-6803a989c76



• Réglementation sur des données (RGPD, CNIL)
• Taille de l’échantillon suffisamment large
• Représentativité : population représentative de la population et 

du contexte de soins cibles et suffisamment hétérogène
• Qualité des données : données manquantes (mécanisme ?), 

méthodes de collecte, tests de validité sur échantillon, …
« garbage in, garbage out »

• Prétraitement (preprocessing) : recodage de variable, retrait 
d’outliers, imputation de données, augmentation, séparation des 
données (train, test, validation)

Données d’apprentissage

de Hond AAH, Leeuwenberg AM, Hooft L, et al (2022) Guidelines and quality criteria for artificial
intelligence-based prediction models in healthcare: a scoping review. npj Digit Med 5:1–13. 



Vagliano I, et al (2022) Machine learning models for predicting acute kidney injury: a systematic review
and critical appraisal. Clinical Kidney Journal 15:2266–2280. 



Méthodes
• Sélection des variables (feature selection)
• Prétraitement (preprocessing)
• Développement des modèles
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sive care unit (ICU) readmission are at high risk
of mortality, but research focusing on the
association of ICU readmission due to sepsis
and mortality is limited. The aim of this study
was to develop and validate a machine learning
(ML) model for predicting in-hospital mortality
in septic patients readmitted to the ICU using
routinely available clinical data.
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between 2008 and 2019. The study cohort
included patients with sepsis requiring ICU
readmission. The data were randomly split into
a training (75%) data set and a validation (25%)
data set. Nine popular ML models were devel-
oped to predict mortality in septic patients
readmitted to the ICU. The model with the best
accuracy and area under the curve (A.C.) in the
validation cohort was defined as the optimal
model and was selected for further prediction
studies. The SHAPELY Additive explanations
(SHAP) values and Local Interpretable Model-
Agnostic Explanation (LIME) methods were
used to improve the interpretability of the
optimal model.
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required ICU readmission during the study
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Explainability of ML is of great importance
to help enhance the trust of medical profes-
sionals, because it shows why predictions are
made and how parameters contribute to the
model [23]. However, almost all of the ML
models are black boxes, and the decision-mak-
ing procedure is complex and hard to interpret
and explain in detail [24, 25]. For this reason,
Lundberg and colleagues first identified an effi-
cient and trustworthy method to significantly
enhance the interpretability of ML models by
incorporating desirable properties from game
theory [26]. This powerful method has also been
successfully used in prediction of the preven-
tion of hypoxemia in patients during surgery
[27], prediction of the development of acute
kidney injury in patients following cardiac sur-
gery [28] and prediction of sepsis in patients
with COVID-19 [29].

Accordingly, the objective of this investiga-
tion was to develop and validate an explainable
ML model based on clinical variables to esti-
mate the in-hospital mortality in septic patients
requiring ICU readmission.

METHODS

Study Design and Data set

This was a modeling study that used a clinical
data set extracted from the Medical Information
Mart for Intensive Care (MIMIC)-IV database
(v.1.0) [30]. The MIMIC-IV is a publicly avail-
able single-center critical care database that
contains information on [ 70,000 critically ill
patients admitted to the ICU at the Beth Israel
Deaconess Medical Center from 2008 to 2019.
After completing a training course called Pro-
tecting Human Research Participants that
includes Health Insurance Portability and
Accountability Act (HIPAA) requirements, we
were granted access (author Chang Hu; certifi-
cation number: 47460147).

The principal procedures of this study were
conducted in three main steps. First, we devel-
oped nine popular ML models using clinical
variables collected on the first 24 h after ICU
readmission. Second, we compared the perfor-
mance of nine ML models in the validation set,
and the optimized model with the best accuracy
and greatest area under the curve (AUC) was

Fig. 1 Flow diagram of this study. MIMIC-IV Medical Information Mart for Intensive Care IV, XGBoost eXtreme
Gradient Boosting, AdaBoost Adaptive Boosting

Infect Dis Ther



• «There is no such thing as a free lunch »
• Tous les algorithmes d’optimisation fonctionnent également bien 

lorsque leurs performances sont moyennées sur tous les 
problèmes possibles

• → Il n’existe pas de meilleur algorithme d’apprentissage 
automatique unique

« No free lunch theorem »
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Principaux algorithmes
Régression



Principaux algorithmes
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Principaux algorithmes
Réseaux de neurones



Méthodes

• Evaluation des modèles
• Critère principale : aire sous la courbe ROC (AUROC)
• Critères secondaires : précision, rappel, score F1
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Méthodes d’évaluation
• Régression

• Racine de l'erreur quadratique moyenne (RMSE)
• Ecart absolu moyen (MAE)
• …

https://hatarilabs.com/ih-en/how-to-calculate-the-root-mean-square-
error-rmse-of-an-interpolated-ph-raster



Méthodes d’évaluation : classification
Réalité

Positif Négatif

Pr
éd
ic
tio
n

Po
si

tif

Vrais positifs (VP) Faux positifs (FP)

N
ég

at
if

Faux négatifs (FN) Vrai négatifs (VN)

• Accuracy

• Précision (VPP)

• Rappel (sensibilité)

• Score F1

• AUROC

<latexit sha1_base64="pVKhE4SFlUsaBMf5EiFMa5KNaPo="></latexit>

accuracy =
V P + V N

V P + V N + FP + FN

<latexit sha1_base64="bNlwmMEEtv2SPbzLridQ0ZyPtaQ=">AAAC4XicjVHLSsNAFD2N7/qqutRFsAiCUBLxtRGKgriMYFtBRZJxqkPTJEwmgpRu3LkTt/6AW/0Z8Q/0L7wzpqAW0QlJzpx7zpm5M0ESilQ5zmvBGhgcGh4ZHSuOT0xOTZdmZutpnEnGaywOY3kU+CkPRcRrSqiQHyWS++0g5I2gtavrjSsuUxFHh+o64adt/yISTcF8RdRZaYHUTOiyvW2fNKXPOnWvS+/Kntc9K5WdimOG3Q/cHJSRDy8uveAE54jBkKENjgiKcAgfKT3HcOEgIe4UHeIkIWHqHF0UyZuRipPCJ7ZF3wuaHedsRHOdmRo3o1VCeiU5bSyRJyadJKxXs009M8ma/S27YzL13q7pH+RZbWIVLon9y9dT/tene1FoYsv0IKinxDC6O5anZOZU9M7tL10pSkiI0/ic6pIwM87eOdvGk5re9dn6pv5mlJrVc5ZrM7zrXdIFuz+vsx/UVyvuRmX9YK1c3cmvehTzWMQy3ecmqtiHhxpl3+ART3i2mHVr3Vn3n1KrkHvm8G1YDx/GP5qM</latexit>

precision =
V P

V P + FP
<latexit sha1_base64="0N8SSxsfNFAMZstjoONUlp9LfjM=">AAAC3nicjVHLSgMxFD2O73fVlbgZLIIglKn42giiIK6kgn2ALTUTUx06LzIZQUpx507c+gNu9XPEP9C/8CaOoBbRDMmcnHvPSW6uG/teohznpc/qHxgcGh4ZHRufmJyazs3MVpIolVyUeeRHsuayRPheKMrKU76oxVKwwPVF1W3v6Xj1UsjEi8JjdRWLRsDOQ6/lcaaIaubmJYtj4dvbdr0lGe9USl2aK/uH3WYu7xQcM+xeUMxAHtkoRbln1HGGCBwpAgiEUIR9MCT0naAIBzFxDXSIk4Q8ExfoYoy0KWUJymDEtmk9p91Jxoa0156JUXM6xacpSWljiTQR5UnC+jTbxFPjrNnfvDvGU9/tiv5u5hUQq3BB7F+6z8z/6nQtCi1smRo8qik2jK6OZy6peRV9c/tLVYocYuI0PqO4JMyN8vOdbaNJTO36bZmJv5pMzeo9z3JTvOlbUoOLP9vZCyqrheJGYf1oLb+zm7V6BAtYxDL1cxM7OEAJZfK+xgMe8WSdWjfWrXX3kWr1ZZo5fBvW/Tsi75kk</latexit>
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ABSTRACT

Introduction: Septic patients requiring inten-
sive care unit (ICU) readmission are at high risk
of mortality, but research focusing on the
association of ICU readmission due to sepsis
and mortality is limited. The aim of this study
was to develop and validate a machine learning
(ML) model for predicting in-hospital mortality
in septic patients readmitted to the ICU using
routinely available clinical data.

Methods: The data used in this study were
obtained from the Medical Information Mart
for Intensive Care (MIMIC-IV, v1.0) database,
between 2008 and 2019. The study cohort
included patients with sepsis requiring ICU
readmission. The data were randomly split into
a training (75%) data set and a validation (25%)
data set. Nine popular ML models were devel-
oped to predict mortality in septic patients
readmitted to the ICU. The model with the best
accuracy and area under the curve (A.C.) in the
validation cohort was defined as the optimal
model and was selected for further prediction
studies. The SHAPELY Additive explanations
(SHAP) values and Local Interpretable Model-
Agnostic Explanation (LIME) methods were
used to improve the interpretability of the
optimal model.
Results: A total of 1117 septic patients who had
required ICU readmission during the study
period were enrolled in the study. Of these
participants, 434 (38.9%) were female, and the
median (interquartile range [IQR]) age was 68.6
(58.4–79.2) years. The median (IQR) ICU inter-
val duration was 2.60 (0.64–5.78) days. After
feature selection, 31 of 47 clinical factors were
ultimately chosen for use in model construc-
tion. Of the nine ML models tested, the best
performance was achieved with the random
forest (RF) model, with an A.C. of 0.81, an
accuracy of 85% and a precision of 62% in the
validation cohort. The SHAP summary analysis
revealed that Glasgow Coma Scale score, urine
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Table 1 Baseline characteristics of the study cohort

Characteristics Survivors (N = 896) Non-survivors (N = 221) P value

Demographic

Age, year 67.9 (57.7–78.2) 71.9 (62.4–83.1) \ 0.001

Sex 0.118

- Male, n (%) 558 (62.3) 125 (56.6)

- Female, n (%) 338 (37.7) 96 (43.4)

Weight, kg 80 (68–94) 78 (67–93) 0.433

Height, cm 170 (163–178) 169 (163–175) 0.232

Comorbidities

Charlson Comorbidity Index 6 (4–8) 7 (6–9) \ 0.001

Hypertension, n (%) 355 (39.6) 79 (35.7) 0.290

Diabetes, n (%) 304 (33.9) 67 (30.3) 0.307

Congestive heart failure, n (%) 342 (38.2) 88 (39.8) 0.652

Cerebrovascular disease, n (%) 146 (16.3) 47 (21.3) 0.080

Chronic pulmonary disease, n (%) 264(29.5) 56 (25.3) 0.224

Liver disease, n (%) 171 (19.1) 68 (30.8) \ 0.001

Renal disease, n (%) 215 (24.0) 77 (34.8) 0.001

Tumor, n (%) 153 (17.1) 62 (28.1) \ 0.001

Vital signs on day 1

Heart rate, bpm 88 (79–99) 93 (83–103) 0.001

Systolic blood pressure, mmHg 114 (105–124) 109 (100–120) \ 0.001

Diastolic blood pressure, mmHg 60 (54–67) 58 (51–64) 0.001

Mean arterial pressure, mmHg 75 (70–82) 71 (67–78) \ 0.001

Respiratory rate 19 (17–23) 20 (18–24) 0.003

Body temperature, !C 36.9 (36.7–37.2) 36.7 (36.4–37.1) \ 0.001

SpO2, % 93 (90–95) 91 (87–94) \ 0.001

Laboratory findings on day 1

White blood cell, 9 103/lL 14.3 (10.3–20.1) 15.0 (10.6–20.7) 0.519

Platelets, 9 103/lL 193 (118–275) 142 (68–222) \ 0.001

Hematocrit, % 26.9 (23.8–30.5) 25.6 (22.7–30.1) 0.033

Hemoglobin, g/dL 8.8 (7.8–10.1) 8.2 (7.3–9.9) 0.001

International normalized ratio 1.4 (1.2–1.7) 1.6 (1.4–2.4) \ 0.001

Prothrombin time, s 15.5 (13.5–18.6) 18.1 (14.8–25.3) \ 0.001

Partial thromboplastin time, s 35 (29–54) 44 (32–75) \ 0.001
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Introduction: Septic patients requiring inten-
sive care unit (ICU) readmission are at high risk
of mortality, but research focusing on the
association of ICU readmission due to sepsis
and mortality is limited. The aim of this study
was to develop and validate a machine learning
(ML) model for predicting in-hospital mortality
in septic patients readmitted to the ICU using
routinely available clinical data.

Methods: The data used in this study were
obtained from the Medical Information Mart
for Intensive Care (MIMIC-IV, v1.0) database,
between 2008 and 2019. The study cohort
included patients with sepsis requiring ICU
readmission. The data were randomly split into
a training (75%) data set and a validation (25%)
data set. Nine popular ML models were devel-
oped to predict mortality in septic patients
readmitted to the ICU. The model with the best
accuracy and area under the curve (A.C.) in the
validation cohort was defined as the optimal
model and was selected for further prediction
studies. The SHAPELY Additive explanations
(SHAP) values and Local Interpretable Model-
Agnostic Explanation (LIME) methods were
used to improve the interpretability of the
optimal model.
Results: A total of 1117 septic patients who had
required ICU readmission during the study
period were enrolled in the study. Of these
participants, 434 (38.9%) were female, and the
median (interquartile range [IQR]) age was 68.6
(58.4–79.2) years. The median (IQR) ICU inter-
val duration was 2.60 (0.64–5.78) days. After
feature selection, 31 of 47 clinical factors were
ultimately chosen for use in model construc-
tion. Of the nine ML models tested, the best
performance was achieved with the random
forest (RF) model, with an A.C. of 0.81, an
accuracy of 85% and a precision of 62% in the
validation cohort. The SHAP summary analysis
revealed that Glasgow Coma Scale score, urine
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0.74) (ESM Fig. S5). The calibration curve also
showed a good agreement between predictions
and actual observations, which demonstrated
the consistency of the RF model (ESM Fig. S6).
Thus, the RF model was applied to the further
interpretation.

Model Explainability

Figure 3 shows the SHAP summary plot that
orders features based on their importance to
predict mortality in the validation cohort. For
the RF approach, GCS score, urine output, BUN,
lactate, platelet count and SBP were the top six
most important features. Figure 4 shows the
relationship between the top six features and
the prediction of patient outcomes. The SHAP
values for these six features exceed zero, repre-
senting an increased risk of mortality. The ele-
vated GCS score, cumulative urine output on
day 1, platelet count and SBP showed a negative

correlation with mortality due to sepsis,
whereas elevated BUN and lactate levels showed
a positive correlation.

Model Application

Figure 5 shows the four prediction patients
using the RF model in the validation set. For
patient A (Fig. 5a), the predicted probability for
in-hospital mortality by the RF model is 2%.
The factors detected for predicting a lower
mortality in this patient include a high GCS
score of 13, a normal urine output of 1845 mL, a
normal kidney function with BUN of 7.0 mg/
dL, a normal serum sodium level of 137 mmol/L
and a normal total bilirubin value of 0.6 mg/dL.
For patient B (Fig. 5b), the predicted probability
for mortality is 6%. The patient’s risk of mor-
tality is only a decreased SpO2 value of 87%,
whereas the normal urine output of 1465 mL,
high GCS score of 13, normal BUN of 14.0 mg/
dL and normal partial thromboplastin time of
27.3 s contribute to a negative impact for mor-
tality. For patient C (Fig. 5c), the predicted
probability for mortality is 33%. The patient’s
oliguria (the cumulative urine output of 222 mL
on day 1), elevated lactate value of 5.6 mmol/L,
high alkaline phosphatase level of 196 U/L and
low mean arterial pressure level of 41 mmHg
contribute to increasing the mortality, whereas

bFig. 2 Area under the receiver operator curve (ROC) and
confusion matrix for each machine learning–based model
to estimate mortality in the validation set. a ROC curves
for the nine machine-learning models to predict in-
hospital mortality, b confusion matrix for each machine
learning–based model to estimate in-hospital mortality.
AdaBoost adaptive boosting

Table 2 Performance of the nine machine-learning classifiers for predicting in-hospital mortality in the validation set

Classifiers A.C. Accuracy Precision Recall F1

Random Forest 0.81 84.64% 62% 0.31 0.41

eXtreme Gradient Boosting 0.79 81.79% 47% 0.35 0.40

AdaBoost 0.78 81.79% 48% 0.41 0.44

Logistic Regression 0.77 81.07% 44% 0.29 0.35

Linear DA 0.77 82.14% 49% 0.41 0.44

Naive Bayes 0.75 80.36% 44% 0.45 0.44

Decision Tree 0.66 77.14% 38% 0.49 0.43

Neural Net 0.65 73.93% 30% 0.37 0.33

Nearest Neighbors 0.58 81.07% 39% 0.14 0.21

A.C. Area under curve, AdaBoost Adaptive Boosting
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association of ICU readmission due to sepsis
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in septic patients readmitted to the ICU using
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readmission. The data were randomly split into
a training (75%) data set and a validation (25%)
data set. Nine popular ML models were devel-
oped to predict mortality in septic patients
readmitted to the ICU. The model with the best
accuracy and area under the curve (A.C.) in the
validation cohort was defined as the optimal
model and was selected for further prediction
studies. The SHAPELY Additive explanations
(SHAP) values and Local Interpretable Model-
Agnostic Explanation (LIME) methods were
used to improve the interpretability of the
optimal model.
Results: A total of 1117 septic patients who had
required ICU readmission during the study
period were enrolled in the study. Of these
participants, 434 (38.9%) were female, and the
median (interquartile range [IQR]) age was 68.6
(58.4–79.2) years. The median (IQR) ICU inter-
val duration was 2.60 (0.64–5.78) days. After
feature selection, 31 of 47 clinical factors were
ultimately chosen for use in model construc-
tion. Of the nine ML models tested, the best
performance was achieved with the random
forest (RF) model, with an A.C. of 0.81, an
accuracy of 85% and a precision of 62% in the
validation cohort. The SHAP summary analysis
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a high GCS score of 13 helps offset this risk. For
patient D (Fig. 5d), the predicted probability for
mortality is 65%. The patient’s risk for a such
high mortality because of a low GCS score of 3,
a lower urine output of 222 mL and abnormal
laboratory findings (high level of glucose, serum
sodium and BUN).

DISCUSSION

Our aim in performing this modeling, ML-based
study was to establish an effective, stable and
explainable model for predicting mortality in
septic patients requiring ICU readmission. The
results demonstrated that the RF model was the

Fig. 3 Feature importance assessment for RF classifier
using SHAP values in the validation set. Each dot
represents 1 patient and accumulates vertically to depict
the density. The color reflects the high and low values of
each feature, with deep color indicating a higher value and
light color indicating a lower value. The X-axis of the
graph represents the SHAP value, and a positive SHAP
value indicates that it contributes positively to predicting
the model and that the probability of mortality occurring

is high, and vice versa. SHAP SHAPELY Additive
explanation, RF Random Forest, GCS Glasgow Coma
Scale, BUN blood urea nitrogen, SBP systolic blood
pressure, MAP mean arterial pressure, ALP alkaline
phosphatase, DBP diastolic blood pressure, PTT partial
thromboplastin time, PO2 partial pressure of oxygen,
PaO2/FiO2 ratio of arterial oxygen partial pressure to
fractional inspired oxygen
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Et ensuite ?

• Pertinence informatique/pertinence clinique
• Validation externe : comment le modèle va se comporter sur une 

autre population ?
• Comment le modèle va s’intégrer dans une pratique clinique ?



Cycle de développement
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• Stockage
• Qualité
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• Choix du modèle
• Entrainement
• Evaluation rétrospective

• Industrialisation (échelle)
• Intégration, interface
• Déploiement
• Evaluation prospective
• Monitoring
• Autorisation

• Acceptabilité
• Interprétabilité
• Facteurs humains



implementation.This limitation is further exacerbatedby thepossibility that
some RCTs may collect implementation data but fail to include it in their
published reports. Despite this it is crucial for the clinical AI field to not only
confirm the effectiveness of AICDSS but also to grasp the contextual factors
that drive its success or failure. In line with this, we advocate for additional
systematic reporting of implementation outcomes, in addition to effec-
tiveness metrics and standard reporting items, as recommended by the
CONSORT-AI and DECIDE-AI guidelines.

Future AI evaluation in healthcare
It is our moral obligation to ensure trustworthy and responsible
adoption of AI in healthcare12. Although current guidelines improve
transparent reporting of technicalmodel development and deployment,
they fall short in addressing the essential implementation processes that
determine the actual clinical benefits. Additionally, the regulatory
approval process for these devices primarily focuses on concerns related
to safety, performance, and risk-benefit considerations, neglecting
factors that influence the adoption of AI at the patient’s bedside. To

establish transparency and foster trust among healthcare professionals
and, ultimately, patients, it is vital to develop a comprehensive under-
standing of the factors that contribute to both successful and unsuc-
cessful implementations in clinical settings8. Common barriers that
hinder clinical adoption of AI, include concerns about loss of auton-
omy, limited integration into clinical workflows, reduced patient
interaction, unintuitive user interface, and unreliable internet
connections13. These obstacles cannot be adequately captured through
quantitative measures alone; they require a multi-faceted approach.
Consequently, it is necessary to expand the implementation science of
AI beyond current guidelines towards an approach that incorporates
the evaluation of implementation outcomes alongside measures of
effectiveness in future clinical trials (see Fig. 2). By evaluating these
outcomes, we can not only evaluate the statistical performance of the AI
but also assess the adoption, usability, and real-world impact of clinical
AI-based interventions in healthcare settings. Additionally, this
approach allows us to identify barriers, facilitators, and strategies for
enhancing and sustaining these interventions over time.

Table 1 | Implementation outcomes reported in randomized controlled trials studying artificial intelligence in healthcare

Reported in N (%)

Implementation outcomea Clinical explanation Implementation stage RCTs (N = 64) Guidelinesb (N = 5)

Appropriateness Is the AI compatible with the clinical workflow and is it useful? Early 5 (8) 0 (0)

Acceptability Is the AI acceptable, agreeable, or satisfactory for the users? Ongoing 10 (16) 0 (0)

Feasibility Can the AI be successfully used as intended by the manufacturer? Early 16 (25) 0 (0)

Adoption Do the users express the initial decision, or action to try or employ the AI? Ongoing 6 (9) 0 (0)

Fidelity Is the AI implemented as intended by the manufacturer? Ongoing 31 (48) 0 (0)

Implementation cost What is the cost impact of implementing the AI system? Late 4 (6) 0 (0)

Penetration Has the AI been adopted by all groups of trained users? Late 0 (0) 0 (0)

Sustainability Is the AI maintained within ongoing clinical operations over time? Late 1 (2) 0 (0)

AI artificial intelligence, RCTs randomized controlled trials.
aDefinitions of implementation outcomes were adapted from the taxonomy of implementation outcomes by Proctor et al.11.
bAI specific guidelines: TRIPOD-AI and STARD-AI, DECIDE-AI, SPIRIT-AI, CONSORT-AI.

Fig. 2 | Overview of the current and desired approach to evaluate artificial
intelligence in healthcare. a In the current situation, artificial intelligence-based
clinical decision support systems (AI-CDSS), are clinically deployed, after going
through multiple preclinical validations (e.g., external and temporal algorithm
validation) to assess their clinical utility and effectiveness. b To enhance

comprehension of factors that contributed to successful implementation or failure at
the bedside, implementation outcomes should be systematically integrated in future
clinical trials evaluating AICDSS in real-world clinical settings. *Implementation
outcomes as described by Proctor et al.11.
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