

DEFINITION OF DATA

ARRIEL BENIS, PHD, HOLON INSTITUTE OF TECHNOLOGY, ISRAEL

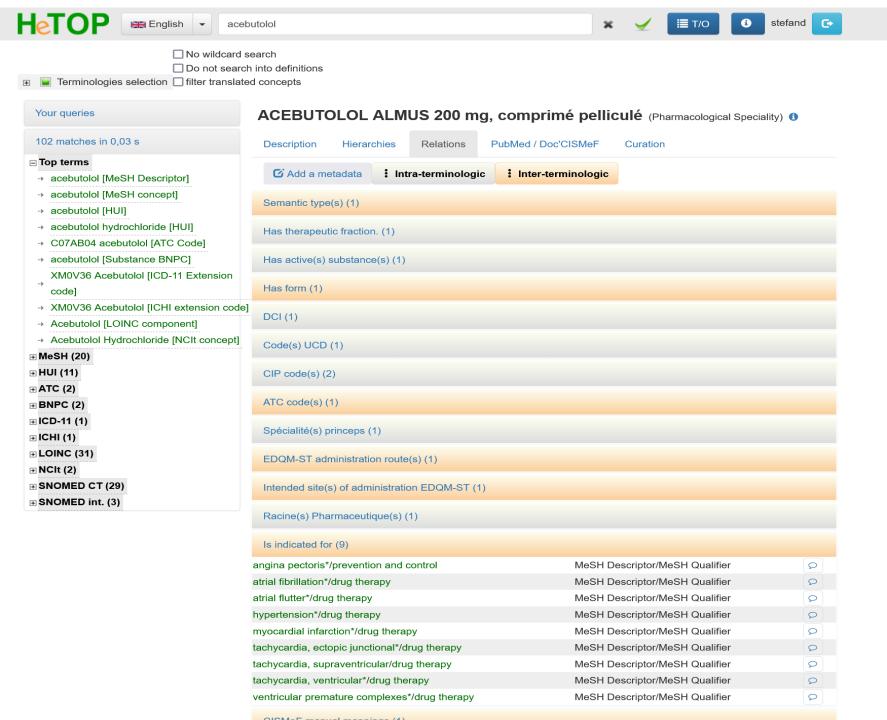
Marginally modified by

Prof. Stefan Darmoni, Rouen University hospital & limics INSERM U1142, Sorbonne université, France

Credits: Introduction to Data Mining by Tan, Steinbach, Kumar (2004)

ATTRIBUTES AND OBJECTS WHAT IS DATA?

Attributes

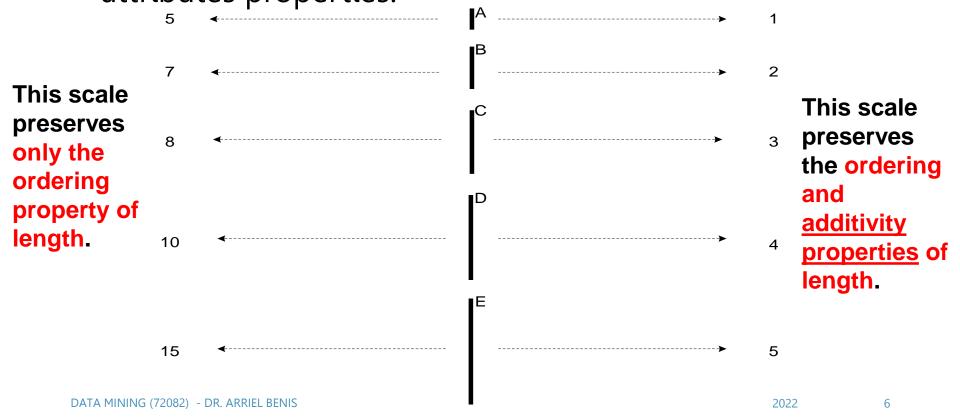

- Collection of data objects and their attributes
- An attribute is a property or characteristic of an object
 - Examples: eye color of a person, temperature, etc.
 - Attribute is also known as variable, field, characteristic, dimension, or feature
- A collection of attributes describe an object
 - Object is also known as record, point, case, sample, entity, or instance

Objects

1			1			
Tid	Refund	Marital Status	Taxable Income	Cheat		
1	Yes	Single	125K	No		
2	No	Married	100K	No		
3	No	Single	70K	No		
4	Yes	Married	120K	No		
5	No	Divorced	95K	Yes		
6	No	Married	60K	No		
7	Yes	Divorced	220K	No		
8	No	Single	85K	Yes		
9	No	Married	75K	No		
10	No	Single	90K	Yes		

DATA, INFORMATION, KNOWLEDGE

- Affectation of an attribute for any specific data generates information
 - E.g. Temperature = 38°... Celsius, not F, (US) not K (International)
- Conditional rule on an information generates knowledge
 - E.g. if Temperature > 38°C then Fever
- Semantic triplet also generates knowledge
 - Two concepts linked by a specific relation
 - Cat IS-A a mammal



ATTRIBUTES AND OBJECTS ATTRIBUTE VALUES

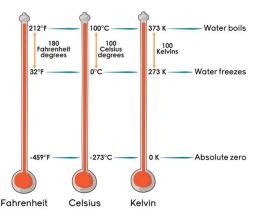
- Attribute values are numbers or symbols assigned to an attribute for a particular object
- Distinction between attributes and attribute values
 - Same attribute can be mapped to different attribute values
 - Example: height can be measured in feet or meters
 - Different attributes can be mapped to the same set of values
 - Example: Attribute values for ID and age are integers
 - But properties of attribute can be different than the properties of the values used to represent the attribute (e.g., string-numbers, string-character)

ATTRIBUTES AND OBJECTS MEASUREMENT OF LENGTH

The way you measure an attribute may not match the attributes properties.

ATTRIBUTES AND OBJECTS TYPES OF ATTRIBUTES

- There are different types of attributes
 - Nominal
 - Examples: ID numbers, eye color, zip codes
 - Ordinal
 - Examples: rankings (e.g., taste of potato chips on a scale from 1-10), grades, height {tall, medium, short}
 - Interval
 - Examples: calendar dates, temperatures in Celsius or Fahrenheit.
 - Ratio
 - Examples: temperature in Kelvin, length, counts, elapsed time (e.g., time to run a race)


ATTRIBUTES AND OBJECTS PROPERTIES OF ATTRIBUTE VALUES

	Attribute Type	Description	Examples	Operations		
orical ative	Nominal (נומינלי)	Nominal attribute values only distinguish. (=, ≠)	zip codes, employee ID numbers, eye color, sex: { <i>male, female</i> }	mode, entropy, contingency correlation, χ2 test		
Categorical Qualitative	Ordinal (סידורי)	Ordinal attribute values also order objects. (<, >)	hardness of minerals, {good, better, best}, grades, street numbers	median, percentiles, rank correlation, run tests, sign tests		
ic tive	Interval (טווחי)	For interval attributes, differences between values are meaningful. (+, -)	calendar dates, temperature in Celsius or Fahrenheit	mean, standard deviation, Pearson's correlation, <i>t</i> and <i>F</i> tests		
Numeric Quantitative	Ratio ('on')	For ratio variables, both differences and ratios are meaningful. (*, /)	temperature in Kelvin, monetary quantities, counts, age, mass, length	geometric mean, harmonic mean, percent variation		

Developed by Stanley Smith Stevens (Psychologist)

ATTRIBUTES AND OBJECTS **DIFFERENCE BETWEEN RATIO AND INTERVAL**

- Is it physically meaningful to say that a temperature of 10 ° is twice that of 5° on
 - the Celsius scale?
 - the Fahrenheit scale?
 - the Kelvin scale?

- Consider measuring the height above average
 - If Bill's height is three centimeters above average and Bob's height is six centimeters above average, then would we say that Bob is twice as tall as Bill?
 - Is this situation analogous to that of temperature?

ATTRIBUTES AND OBJECTS TRANSFORMATION OF ATTRIBUTE VALUES

	Attribute Type	Transformation	Comments
rical tive	Nominal	Any permutation of values	If all employee ID numbers were reassigned, would it make any difference?
Categorical Qualitative	Ordinal	An order preserving change of values, i.e., new_value = f(old_value) where f is a monotonic function	An attribute encompassing the notion of good, better best can be represented equally well by the values {1, 2, 3} or by {0.5, 1, 10}.
Numeric Quantitative	Interval	new_value = a * old_value + b where a and b are constants	Thus, the Fahrenheit and Celsius temperature scales differ in terms of where their zero value is and the size of a unit (degree).
Z gn	Ratio	new_value = a * old_value	Length can be measured in meters or feet.

Developed by Stanley Smith Stevens (Psychologist)

ATTRIBUTES AND OBJECTS **DISCRETE AND CONTINUOUS ATTRIBUTES**

Discrete Attribute

- Only a finite or countably infinite set of values
- Examples: zip codes, counts, or the set of words in a collection of documents
- Often represented as integer variables.
- Note: binary attributes are a special case of discrete attributes

Continuous Attribute

- Real numbers as attribute values
- Examples: temperature, height, or weight.
- Practically, real values can only be measured and represented using a finite number of digits.
- Continuous attributes are typically represented as floating-point variables.

ATTRIBUTES AND OBJECTS CRITIQUES OF THE ATTRIBUTE CATEGORIZATION

Incomplete

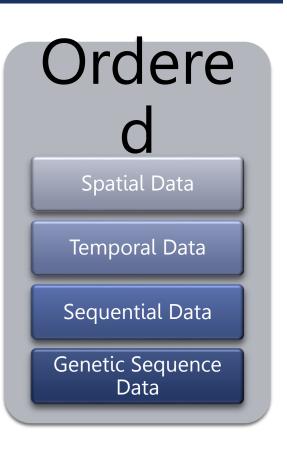
- Asymmetric binary
 (e.g., sex: symmetric, gender, temperature, pain...:
 asymmetric)
- Cyclical (e.g., seasonality)
- Partially ordered
- Partial membership (e.g., fuzzy logic)
- Multivariate and Relationships between the data

Real data is approximate and noisy

- Can complicate recognition of the proper attribute type (e.g., distance as a category)
- Treating one attribute type as another may be approximately correct (e.g., age, height, distance)

ATTRIBUTES AND OBJECTS KEY MESSAGES FOR ATTRIBUTE TYPES

- The types of operations you choose should be "meaningful" for the type of data you have
 - Distinctness, order, meaningful intervals, and meaningful ratios are only four (among many possible) properties of data
 - The data type you see often numbers or strings –
 may not capture all the properties or
 may suggest properties that are not present
 - Analysis may depend on these other properties of the data
 - Many statistical analyses depend only on the distribution
 - In the end, what is meaningful can be specific to domain


TYPES OF DATA <u>IMPORTANT CHARACTERISTICS OF DATA</u>

- Dimensionality (number of attributes)
 - High dimensional data brings a number of challenges (Curse of dimensionality)
- Sparsity
 - Only presence counts
- Resolution
 - Patterns depend on the scale
- Size
 - Type of analysis may depend on size of data

TYPES OF DATA SETS

Record Data Matrix **Document Data** Transaction Data

TYPES OF DATA RECORD DATA

 Data that consists of a collection of records, each of which consists of a fixed set of attributes

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

TYPES OF DATA **DATA MATRIX**

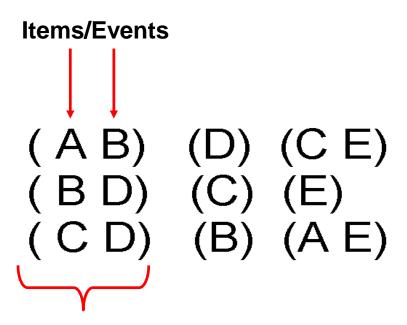
- If data objects have the same fixed set of numeric attributes, then the data objects can be thought of as points in a multi-dimensional space, where each dimension represents a distinct attribute
- Such a data set can be represented by an m by n matrix, where there are m rows, one for each object,

<u> </u>						
and n	of x Load	, ሮኮ jecfj o r e of y load	ach¤etı	'i but e	Thickness	
	10.23	5.27	15.22	2.7	1.2	
	12.65	6.25	16.22	2.2	1.1	

TYPES OF DATA **DOCUMENT DATA**

- Each document becomes a 'term' vector
 - Each term is a component (attribute) of the vector
 - The value of each component is the number of times the corresponding term occurs in the document.

	team	coach	play	ball	score	game	win	lost	timeout	season
Document 1	3	0	5	0	2	6	0	2	0	2
Document 2	0	7	0	2	1	0	0	3	0	0
Document 3	0	1	0	0	1	2	2	0	3	0


TYPES OF DATA TRANSACTION DATA

- A <u>special type of data</u>, where
 - Each transaction involves a set of items.
 - For example, consider a grocery store. The set of products purchased by a customer during one shopping trip constitute a transaction, while the individual products that were purchased are the items.
 - We can represent transaction data as record data

TID	Items
1	Bread, Coke, Milk
2	Beer, Bread
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Coke, Diaper, Milk

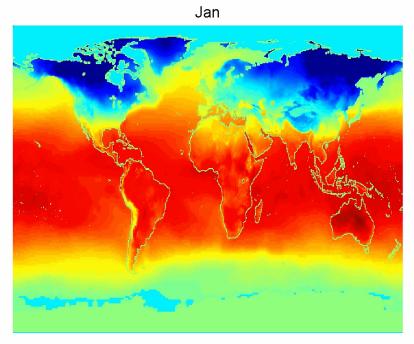
TYPES OF DATA ORDERED DATA

Sequences of transactions



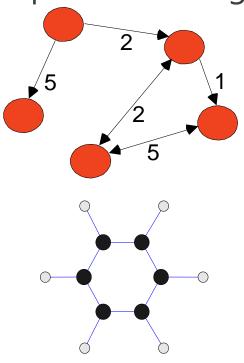
An element of the sequence

TYPES OF DATA ORDERED DATA


Genomic sequence data

What's happen if we change the order?!?

TYPES OF DATA ORDERED DATA


Spatio-Temporal Data

Average Monthly Temperature of land and ocean

TYPES OF DATA GRAPH DATA

Examples: Generic graph, a molecule, and webpages

Benzene Molecule: C6H6

Useful Links:

- Bibliography
- · Other Useful Web sites
 - ACM SIGKDD
 - KDnuggets
 - The Data Mine

Book References in Data Mining and Knowledge Discovery

Usama Fayyad, Gregory Piatetsky-Shapiro, Padhraic Smyth, and Ramasamy uthurasamy, "Advances in Knowledge Discovery and Data Mining", AAAI Press/the MIT Press, 1996.

J. Ross Quinlan, "C4.5: Programs for Machine Learning", Morgan Kaufmann Publishers, 1993. Michael Berry and Gordon Linoff, "Data Mining Techniques (For Marketing, Sales, and Customer Support), John Wiley & Sons, 1997.

Knowledge Discovery and Data Mining Bibliography

(Gets updated frequently, so visit often!)

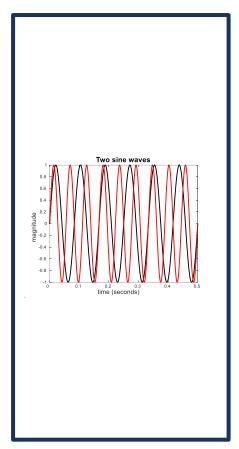
- Books
- General Data Mining

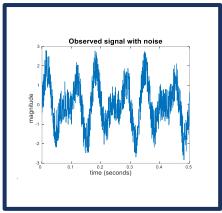
General Data Mining

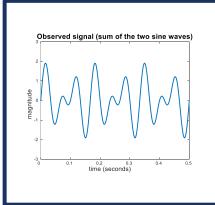
Usama Fayyad, "Mining Databases: Towards Algorithms for Knowledge Discovery", Bulletin of the IEEE Computer Society Technical Committee on data Engineering, vol. 21, no. 1, March 1998.

Christopher Matheus, Philip Chan, and Gregory Piatetsky-Shapiro, "Systems for knowledge Discovery in databases", IEEE Transactions on Knowledge and Data Engineering, 5(6):903-913, December 1993.

DATA QUALITY **DEFINITION(S)**

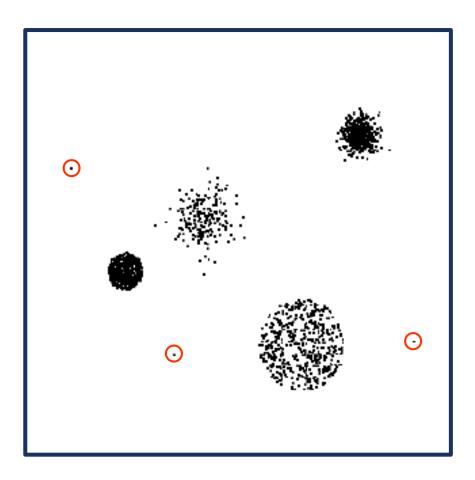

- Poor data quality
 negatively affects many data processing efforts
- Data mining example.
 - a classification model for detecting people who are loan risks is built using poor data
 - Some credit-worthy candidates are denied loans
 - More loans are given to individuals that default!!!


DATA QUALITY ...



- What kinds of data quality problems?
- How can we detect problems with the data?
- What can we do about these problems?
- Examples of data quality problems:
 - Noise and outliers
 - Wrong data
 - Fake data
 - Missing values
 - Duplicate data

DATA QUALITY **NOISE**



- For objects,noise is an extraneous object
- For attributes, noise refers to modification of original values
 - Examples: distortion of a person's voice when talking on a poor phone and "snow" on television screen
 - The figures below show two sine waves of the same magnitude and different frequencies, the waves combined, and the two sine waves with random noise
 - The magnitude and shape of the original signal is distorted

DATA QUALITY **OUTLIERS**

- Outliers are data objects with characteristics that are considerably different than most of the other data objects in the data set
 - Case 1: Outliers are noise that interferes with data analysis
 - Case 2: Outliers are the goal of our analysis
 - Credit card fraud
 - Intrusion detection

DATA QUALITY MISSING VALUES

- Reasons for missing values
 - Information is not collected
 (e.g., people decline to give their age and weight)
 - Attributes may not be applicable to all cases (e.g., annual income is not applicable to children)
- Handling missing values
 - Eliminate data objects or variables
 - Estimate missing values
 - Example: time series of temperature
 - Example: census results
 - Ignore the missing value during analys

DATA QUALITY **DUPLICATE DATA**

- Data set may include data objects that are duplicates, or almost duplicates of one another
 - Major issue when merging data from heterogeneous sources
- Examples:
 - Same person with multiple email addresses
- Data cleaning
 - Process of dealing with duplicate data issues
- When should duplicate data not be removed?

